ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий – C04B 35/00

Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C04 Цементы; бетон; искусственные камни; керамика; огнеупоры
C04B Известь; магнезия; шлак; цементы; их составы, например строительные растворы, бетон или аналогичные строительные материалы; искусственные камни; керамика; огнеупоры, обработка природного камня
C04B 35/00 Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий
C04B 35/01 .на основе оксидов
C04B 35/03 ..на основе оксида магния, оксида кальция или смеси оксидов, выделенных из доломита
C04B 35/035 ...огнеупоры из зернистых смесей, содержащие неоксидные огнеупорные материалы, например углерод
C04B 35/04 ...на основе оксида магния
C04B 35/043 ....огнеупоры из зернистых смесей
C04B 35/047 .....содержащие оксид хрома или хромовую руду
C04B 35/05 ....огнеупоры, получаемые горячим литьем
C04B 35/053 ....тонкая керамика
C04B 35/057 ...на основе оксида кальция
C04B 35/06 ...на основе смеси оксидов, выделенных из доломита
C04B 35/08 ..на основе оксида бериллия
C04B 35/10 ..на основе оксида алюминия
C04B 35/101 ...огнеупоры из зернистых смесей
C04B 35/103 ....содержащие неоксидные огнеупорные материалы, например углерод
 35/106 имеет преимущество
C04B 35/105 ....содержащие оксид хрома или хромовую руду
C04B 35/106 ....содержащие оксид циркония или циркон (ZrSiO4)
C04B 35/107 ...огнеупоры, получаемые горячей отливкой
C04B 35/109 ....содержащие оксид циркония или циркон (ZrSiO4)
C04B 35/111 ...тонкая керамика
C04B 35/113 ....на основе бета-оксида алюминия
C04B 35/115 ....полупрозрачные и прозрачные изделия
C04B 35/117 ....композиты
C04B 35/119 .....с оксидом циркония
C04B 35/12 ..на основе оксида хрома
 35/04735/105 имеют преимущество
C04B 35/14 ..на основе диоксида кремния
C04B 35/16 ..на основе силикатов, кроме глины
C04B 35/18 ...с высоким содержанием оксида алюминия
C04B 35/185 ....муллит
C04B 35/19 ....алюмосиликаты щелочных металлов, например сподумен
C04B 35/195 ....алюмосиликаты щелочноземельных металлов, например кордиэрит
C04B 35/20 ...с высоким содержанием оксида магния
C04B 35/22 ...с высоким содержанием оксида кальция
C04B 35/26 ..на основе ферритов
C04B 35/28 ...с оксидом никеля в качестве главного оксида
C04B 35/30 ....с оксидом цинка
C04B 35/32 ...с оксидом кобальта в качестве главного оксида
C04B 35/34 ....с оксидом цинка
C04B 35/36 ...с оксидом марганца в качестве главного оксида
C04B 35/38 ....с оксидом цинка
C04B 35/40 ...с оксидами редкоземельных металлов
C04B 35/42 ..на основе хромитов
 35/04735/105 имеют преимущество
C04B 35/44 ..на основе алюминатов
C04B 35/443 ...магнийалюминатная шпинель
C04B 35/447 ..на основе фосфатов
C04B 35/45 ..на основе оксида меди или его твердого раствора с другими оксидами
C04B 35/453 ..на основе оксидов цинка, олова или висмута или их твердых растворов с другими оксидами, например цинкатов, станнатов или висмутатов
C04B 35/457 ...на основе оксидов олова или станнатов
C04B 35/46 ..на основе оксидов титана или титанатов
содержащие также оксиды циркония или гафния, цирконаты или гафнаты  35/49
C04B 35/462 ...на основе титанатов
C04B 35/465 ....на основе титанатов щелочноземельных металлов
C04B 35/468 .....на основе титанатов бария
C04B 35/47 .....на основе титанатов стронция
C04B 35/472 ....на основе титанатов свинца
C04B 35/475 ....на основе титанатов висмута
C04B 35/478 ....на основе титанатов алюминия
C04B 35/48 ..на основе оксидов циркония или гафния или цирконатов или гафнатов
C04B 35/482 ...огнеупоры из зернистых смесей
C04B 35/484 ...огнеупоры, получаемые плавлением смесей
C04B 35/486 ...тонкая керамика
C04B 35/488 ....композиты
C04B 35/49 ...содержащие также оксид титана или титанаты
C04B 35/491 ....на основе цирконатов и титанатов свинца
C04B 35/493 .....содержащие также другие соединения свинца
C04B 35/495 ..на основе оксидов ванадия, ниобия, тантала, молибдена или вольфрама или их твердых растворов с другими оксидами, например ванадаты, ниобаты, танталаты, молибдаты или вольфраматы
C04B 35/497 ...на основе твердых растворов с оксидом свинца
C04B 35/499 ....содержащих также титанаты
C04B 35/50 .на основе соединений редкоземельных металлов 
C04B 35/505 ..на основе оксида иттрия
C04B 35/51 .на основе соединений актиноидов
материалы для ядерного топлива  G 21C 3/62
C04B 35/515 .на другой основе кроме оксидов
 35/5035/51 имеют преимущество
C04B 35/52 ..на основе углерода, например графита
C04B 35/524 ...полученные из полимерных предшественников, например стеклоподобный углеродный материал
C04B 35/528 ...полученные из углеродных частиц с или без других неорганических компонентов
C04B 35/532 ....содержащих карбонизуемое связующее
C04B 35/536 ...на основе расширенного графита
C04B 35/547 ..на основе сульфидов или селенидов
C04B 35/553 ..на основе фторидов
C04B 35/56 ..карбидов
C04B 35/563 ...на основе карбида бора
C04B 35/565 ...на основе карбида кремния
C04B 35/567 ....огнеупоры из зернистых смесей
C04B 35/569 ....тонкая керамика
C04B 35/571 .....полученная из полимерных предшественников
C04B 35/573 .....полученная реакционным спеканием
C04B 35/575 .....полученная спеканием под давлением
C04B 35/576 .....полученная спеканием без приложения давления
C04B 35/577 .....композиты
C04B 35/58 ..на основе боридов, нитридов или силицидов
C04B 35/581 ...на основе нитрида алюминия
C04B 35/582 ....композиты
C04B 35/583 ...на основе нитрида бора
C04B 35/5831 ....на основе кубического нитрида бора
C04B 35/5833 ....на основе гексагонального нитрида бора
C04B 35/5835 ....композиты
C04B 35/584 ...на основе нитрида кремния
C04B 35/586 ....огнеупоры из зернистых смесей
C04B 35/587 ....тонкая керамика
C04B 35/589 .....полученная из полимерных предшественников
C04B 35/591 .....полученная реакционным спеканием
C04B 35/593 .....полученная спеканием под давлением
 35/594 имеет преимущество
C04B 35/594 .....полученная спеканием продукта реакционного спекания под давлением или без него
C04B 35/596 .....композиты
C04B 35/597 ...на основе оксинитридов кремния
C04B 35/599 ....на основе оксинитридов кремния и алюминия (сиалоны)
C04B 35/622 .способы формования; обработка порошков неорганических соединений перед производством керамических изделий
C04B 35/624 ..золь-гельная обработка
C04B 35/626 ..получение или обработка порошков индивидуально или в шихте
C04B 35/628 ...покрытие порошков
C04B 35/63 ...использование добавок, специально подобранных для формования изделий
C04B 35/632 ....органические добавки
C04B 35/634 .....полимеры
 35/636 имеет преимущество
C04B 35/636 .....полисахариды или их производные
C04B 35/638 ....удаление их
C04B 35/64 ..способы обжига или спекания
 33/32 имеет преимущество
C04B 35/645 ...спекание под давлением
C04B 35/65 ...реакция спекания составов, содержащих свободный металл или свободный кремний
C04B 35/653 ..процессы, включающие стадию плавления
C04B 35/657 ...для производства огнеупоров
 35/0535/107,  35/484 имеют преимущество
C04B 35/66 .монолитные огнеупоры или огнеупорные строительные растворы, в том числе содержащие или не содержащие глину 
C04B 35/71 .керамические изделия, содержащие макроскопические армирующие агенты
 35/66 имеет преимущество
C04B 35/74 ..содержащие металлические формованные материалы
C04B 35/76 ...волокна, нити, пластинки, спиральные пружины или подобные им формованные материалы
C04B 35/78 ..содержащие неметаллические материалы
C04B 35/80 ...волокна, нити, пластинки, спиральные пружины или подобные им формованные материалы
C04B 35/81 ....нитевидные монокристаллы
C04B 35/82 ....асбест; стекло; плавленый кварц
C04B 35/83 ....углеродные волокна в углеродной матрице
C04B 35/84 ...материалы для пропитывания или покрытий

Патенты в данной категории

НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ С СЕГНЕТОЭЛЕКТРИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ

Изобретение относится к наноструктурированным материалам с сегнетоэлектрической активностью. Технический результат заключается в получении сегнетоэлектрического материала с высокими и регулируемыми диэлектрическими и пироэлектрическими характеристиками. Нанокомпозитный материал с сегнетоэлектрическими свойствами содержит в качестве связующего вещества кремнезем SiO2, а в качестве сегнетоактивного вещества соль триглицинсульфата (NH2CH2 COOH)3·H2SO4 при следующем соотношении компонентов, мас.%: SiO2 - 56-75, триглицинсульфат - 25-44. Материал имеет зернистую структуру с размерами зерен от 50 до 80 нм. 2 ил., 5 пр.

2529682
выдан:
опубликован: 27.09.2014
КОМПОЗИЦИОННЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ

Изобретение относится к получению композиционного алюмоциркониевого керамического материала, который обладает плотной структурой и может применяться в медицине для изготовления имплантатов и медицинских инструментов. Композиционный керамический материал изготовлен на основе оксида алюминия в альфа-фазе с размером частиц менее 1,0 мкм и в качестве добавок содержит оксид циркония, стабилизированный оксидом иттрия, в сочетании моноклинной и тетрагональной фаз, нанопорошок оксида алюминия и кордиерит. Нанопорошок оксида алюминия находится в сочетании альфа- и тэта-фаз с размерами частиц менее 100 нм. Нанопорошок оксида алюминия введен в количестве до 5%, а кордиерит - до 10%. Частицы оксида циркония имеют размер менее 0,8 мкм. Дополнительно в качестве добавки может быть введен нанопорошок оксида циркония в любой фазе в количестве от 0 до 5%. Композиционный керамический материал обладает более высокими механопрочностными показателями: прочность на изгиб выше 500 МПа, трещиностойкость 5,5-6 МПа·м0,5, прочность на сжатие 600-800 МПа. 1 з.п. ф-лы, 3 пр.

2529540
выдан:
опубликован: 27.09.2014
ДЕТАЛЬ МАЛОЙ ТОЛЩИНЫ ИЗ ТЕРМОСТРУКТУРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к деталям из термоструктурного композиционного материала, имеющим по меньшей мере в одной части малую толщину, и может быть использовано в авиационной и космической областях, например в корпусах газотурбинных двигателей или диффузорах сопел. Деталь изготовлена из материала, содержащего волокнистый каркас из углеродных или керамических волокон, уплотненный матрицей, причём толщина детали составляет меньше 2 мм и даже меньше 1 мм; волокнистый каркас образован единственной толщиной многослойной ткани, сформированной из рассредоточенных нитей, имеющих весовой номер, равный, по меньшей мере, 200 текс, объемная доля волокон составляет от 25% до 45% и отношение между числом слоев многослойной ткани и толщиной детали в миллиметрах равно по меньшей мере 4. Технический результат изобретения - придание композиционному материалу желаемых механических свойств при получении детали малой толщины. 2 н. и 8 з.п. ф-лы, 3 пр., 6 ил.

2529529
выдан:
опубликован: 27.09.2014
КЕРАМИЧЕСКИЙ МАТЕРИАЛ С НИЗКОЙ ТЕМПЕРАТУРОЙ ОБЖИГА

Изобретение относится к радиоэлектронной технике и касается создания керамических материалов с низкой температурой обжига, предназначенных для использования в СВЧ-диапазоне, в том числе при изготовлении керамических подложек для гибридных интегральных схем в изделиях СВЧ-техники. Технический результат изобретения - получение керамического материала с низкой температурой обжига для изделий электронной техники с высоким значением диэлектрической проницаемости до =70, низким значением тангенса угла диэлектрических потерь до 15·10-4, с высокой механической прочностью, высоким электросопротивлением и плотностью не ниже 0,95 теор. Предлагаемый керамический материал с низкой температурой обжига в исходных компонентах содержащий в качестве базового состава оксиды магния, кальция и титана, а также оксиды циркония и цинка, отличается тем, что он дополнительно содержит оксид никеля и железа при следующем соотношении компонентов, вес.%: оксид магния (MgO) 50,5÷0,5, оксид кальция (СаО) 1,0÷41,5, оксид циркония (ZrO2) 0,25÷0,05, оксид цинка (ZnO) 2,5÷0,5, оксид железа (Fe2O 3) 0,1÷0,7, оксид никеля (NiO) 0,1÷1,5, оксид титана (TiO2) - остальное. 1 табл., 13 пр.

2527965
выдан:
опубликован: 10.09.2014
ОГНЕУПОРНЫЙ БЛОК ДЛЯ СТЕКЛОПЛАВИЛЬНОЙ ПЕЧИ

Настоящее изобретение относится к плавленым огнеупорным продуктам на основе оксида алюминия - оксида кремния - оксида циркония и может быть использовано в стеклоплавильных печах в контакте с расплавленным стеклом. Плавленый огнеупорный продукт имеет следующий средний химический состав в мас.% в пересчете на оксиды: ZrO2 30-46, SiO2 10-16, Al 2O3 - дополнение до 100%, при этом Y2 O3 50/ZrO2 и Y2O3 5%, Na2O+K2O 0,5-4%, CaO 0,5%; и другие вещества - 1,5%. Продукт используется в виде огнеупорных блоков массой более 10 кг. Форма блока не ограничивается. Технический результат изобретения - получение продукта без дефектов, обладающего устойчивостью к коррозии и образованию пузырей в процессе службы. 2 н. и 7 з.п. ф-лы, 1 табл.

2527947
выдан:
опубликован: 10.09.2014
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ ИЗ ОКСИДА ИТТЕРБИЯ

Изобретение относится к области получения изделий из оксидной керамики и может быть использовано в медицинской и химической промышленности, в частности в качестве источников радиоактивного излучения при лечении раковых опухолей. Керамику из оксида иттербия получают путем формования заготовки из порошка оксида иттербия (Yb2O3) и последующей термической и термобарической обработки. Термобарическую обработку проводят в области термодинамической стабильности кубической фазы или моноклинной фазы оксида иттербия в диапазоне давлений от 2,0 до 8,0 ГПа и температурах в пределах 600-1500°C с выдержкой от 5 до 100 секунд. При реализации предлагаемого способа фазовый состав может целенаправленно меняться от чистой кубической до чистой моноклинной фазы при плотности керамики от 9,0 до 10,0 г/см3. Технический результат изобретения - получение прочной керамики с высокой плотностью, что позволяет повысить её радиационную активность и уменьшить габариты. 5 пр., 3 ил.

2527362
выдан:
опубликован: 27.08.2014
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМОКИСЛОРОДНОЙ КЕРАМИКИ, СТРУКТУРИРОВАННОЙ НАНОСТРУКТУРАМИ TIN

Изобретение относится к области нанотехнологий, в частности к производству высокопрочного и высокотермостойкого керамического композиционного материала на основе алюмокислородной керамики, структурированной в объеме наноструктурами (нанонитями) TiN, и может быть использовано в машиностроении, в изделиях авиационно-космической техники, двигателестроении, металлообрабатывающей промышленности, в наиболее важных и подверженных экстремальным термоциклическим нагрузкам узлах и деталях. Новый керамический композиционный материал включает алюмокислородную матрицу и дисперсную фазу TiN при соотношении, мас.%: Al2O3 - 84,1% и TiN - 15,9% с диаметром нанонитей TiN 5 нм и имеет высокие прочностные характеристики: предел прочности при 3-точечном изгибе 1262±20 МПа и вязкость разрушения 9 МПа/м1/2, за счет чего он может успешно использоваться в экстремальных условиях высоких термоциклических нагрузок при температурах до 1500°C на воздухе. 2 пр., 2 табл.

2526453
выдан:
опубликован: 20.08.2014
СПИН-СТЕКОЛЬНЫЙ МАГНИТНЫЙ МАТЕРИАЛ

Изобретение относится к разработке новых магнитных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти. Спин-стекольный магнитный материал TbFeTi2 O7 включает железо, титан, кислород и тербий при следующем соотношении компонентов, мас.%: Tb - 37,61; Fe - 13,22; Ti - 22,66; О - 26,51. Способ получения тербийсодержащего спин-стекольного материала включает приготовление шихты из оксидов Fe2 O3, Tb2О3 и TiO2, формование таблеток и их спекание в четыре этапа, максимальная температура отжига составляет 1250°C. Техническим результатом изобретения является получение нового магнитного материала с состоянием спинового стекла, с отсутствием сильно поглощающих нейтроны элементов. 2 табл., 2 ил.

2526086
выдан:
опубликован: 20.08.2014
СПОСОБ ПОЛУЧЕНИЯ КВАРЦЕВОЙ КЕРАМИКИ

Изобретение относится к технологии получения модифицированных керамических материалов на основе кварцевого стекла. Техническим результатом изобретения является повышение прочности и термостойкости изделий. Способ получения кварцевой керамики включает изготовление шликера из боя кварцевого стекла, формирование сырой заготовки методом отлива в гипсовые формы, пропитку сырой заготовки жидким пропитывающим раствором, сушку пропитанной заготовки кварцевой керамики и последующую термообработку. При этом пропитывающий раствор содержит смесь Al(NO3)3, тетраэтоксисилана, этанола и воды, молярное соотношение компонентов обеспечивает в пропитывающем растворе рН 4, а термообработку пропитанной заготовки кварцевой керамики осуществляют при температуре 950-1200°C. 1 з.п. ф-лы, 6 ил., 2 табл., 1 пр.

2525892
выдан:
опубликован: 20.08.2014
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ ТИГЛЕЙ ДЛЯ АЛЮМОТЕРМИЧЕСКОЙ ВЫПЛАВКИ ЛИГАТУР, СОДЕРЖАЩИХ ВАНАДИЙ И/ИЛИ МОЛИБДЕН

Изобретение относится к металлургии цветных металлов и может быть использовано для изготовления футерованных керамикой тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов. Способ изготовления керамических тиглей включает формирование тигля из огнеупорной массы, выдержку, сушку и охлаждение тигля. Огнеупорную массу готовят смешиванием измельченного шлака - побочного продукта алюмотермического производства выплавляемых лигатур, содержащих ванадий и/или молибден, суперпластификатора СП-1 и высокоглиноземистого цемента. Смешивают шлак с пластификатором из расчета 0,8-1,2 кг пластификатора на 200 кг шлака, полученную смесь разбавляют водой из расчета 1 дм3 на 14-15 кг шлака, смешивают до полного увлажнения смеси, затем вводят высокоглиноземистый цемент из расчета 0,5-1,5 кг на 12-14 кг шлака и перемешивают до однородной массы. Сушку тигля осуществляют выдержкой при температуре от 100 до 150°C в течение 2±0,5 часов, после чего температуру сушки увеличивают до 650°C и выдерживают в течение 10±0,5 часов. Технический результат изобретения заключается в получении высокопрочного огнеупорного керамического монолитнонабивного тигля с низкой теплопроводностью при малой энергоемкости способа его изготовления. 1 з.п. ф-лы, 1 табл.

2525890
выдан:
опубликован: 20.08.2014
СПОСОБ ЛЕГИРОВАНИЯ АЛЮМООКСИДНОЙ КЕРАМИКИ

Изобретение относится к технологиям получения керамических материалов, в частности к способам легирования керамики, и может быть использовано в области электротехники и машиностроения для изготовления высокопрочных керамических изделий. Техническим результатом изобретения является повышение прочности и снижение рассеяния прочности алюмооксидной керамики. Способ легирования алюмооксидной керамики включает получение заготовки из шликера, удаление технологической связки и обжиг. Согласно изобретению после удаления технологической связки заготовку пропитывают водным раствором нитрата цирконила ZrO(NO3)2×2Н 2О, затем осуществляют ее нагрев с повышением температуры до 400°С. Последующий обжиг выполняют с равномерным нагревом заготовки до температуры 1600-1650оС в течение 12 часов, выдерживают при максимальной температуре до 1 часа и осуществляют равномерное охлаждение заготовки до комнатной температуры в течение 3-4 часов. 1 ил., 1 табл.

2525889
выдан:
опубликован: 20.08.2014
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ ТИГЛЕЙ ДЛЯ АЛЮМОТЕРМИЧЕСКОЙ ВЫПЛАВКИ ЛИГАТУР РЕДКИХ ТУГОПЛАВКИХ МЕТАЛЛОВ

Изобретение относится к металлургии цветных металлов и может быть использовано для изготовления футерованных керамикой тиглей для выплавки лигатур, содержащих ванадий и/или молибден. Технический результат изобретения - создание тиглей с гарантированной стойкостью футеровки при эксплуатации. Способ включает формирование тигля из огнеупорной массы, которую готовят смешиванием 5-15%-ного водного раствора соды кальцинированной со шлаком - побочным продуктом алюмотермического производства выплавляемых лигатур, из расчета 0,07-0,15 л водного раствора кальцинированной соды на 1 кг шлака, выдержку, сушку и охлаждение тигля. Сушку тигля осуществляют выдержкой при температуре от 100 до 150°С в течение 1,0-1,5 часов, после чего температуру сушки увеличивают до 600-800°С и выдерживают в течение 9,5-11 часов. Изготовленный тигель имеет открытую пористость футеровки порядка 38-40%, водопоглощение порядка 13-18%, механическую прочность порядка 3-10 МПа.

2525887
выдан:
опубликован: 20.08.2014
ИЗНОСОСТОЙКИЙ КОМПОЗИЦИОННЫЙ КЕРАМИЧЕСКИЙ НАНОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к области технической керамики, в частности к износостойкому композиционному керамическому наноструктурированному материалу на основе оксида алюминия, который может быть использован для изготовления режущего инструмента и износостойких деталей для машиностроения. Предложенный керамический материал на основе оксида алюминия с объёмным содержанием компонентов: Al2 O3 63-82%, TiCN 16-34%, ZrO2 2-3%, содержит фазу карбонитрида титана TiCN на границах зерен оксида алюминия и наноразмерные частицы диоксида циркония внутри зерен оксида алюминия. Фаза карбонитрида титана представлена наноразмерными частицами и частицами субмикронного размера. Дополнительно наноразмерные частицы TiCN и ZrO2 присутствуют на границах зерен оксида алюминия и частиц фазы TiCN субмикронного размера. Предложенный способ получения керамического материала, включает стадии помола, смешения компонентов после помола и спекания полученной смеси, причём скорость нагрева смеси до температуры спекания поддерживают постоянной в диапазоне 50-400 град/мин, а спекание осуществляют при температурах от 1450 до 1600°C, при воздействии электрических и/или электромагнитных полей под давлением. Технический результат изобретения - высокие показатели прочности, твердости, износостойкости материала, в том числе при повышенных температурах. 2 н. и 3 з.п. ф-лы, 11 пр., 2 табл., 1 ил.

2525538
выдан:
опубликован: 20.08.2014
СПОСОБ ИЗГОТОВЛЕНИЯ НИЗКОПЛОТНЫХ МАТЕРИАЛОВ И НИЗКОПЛОТНЫЙ МАТЕРИАЛ

Изобретение может быть использовано при получении изделий, работающих в области высоких температур. Сначала получают частицы терморасширенного графита нагревом частиц гидролизованного нитрата графита с удельной энергией нагрева, равной или превышающей 4,7 кДж/г в атмосфере продуктов сгорания жидкого или газообразного топлива на воздухе с коэффициентом избытка воздуха в пересчете на топливо =0,8-1,1. Полученный терморасширенный графит компактируют до кажущейся плотности от 0,03 до 0,1 г/см3 путем прокатки или одноосного прессования. Затем материал разрезают на мерные заготовки. По меньшей мере, две мерные заготовки подвергают совместному обжатию с получением монолитного материала. Готовый низкоплотный материал выполнен в виде длинномерного изделия с шириной до 1500 мм. Изобретение позволяет получить низкоплотный теплопроводящий материал, обладающий высокими прочностью на изгиб и модулем упругости и характеризующийся отсутствием кислотных коррозионно-активных добавок. 2 н. и 8 з.п. ф-лы, 3 пр.

2525488
выдан:
опубликован: 20.08.2014
СОСТАВ ШИХТЫ ДЛЯ ВЫСОКОПОРИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА С СЕТЧАТО-ЯЧЕИСТОЙ СТРУКТУРОЙ

Изобретение относится к составу шихты для высокопористого керамического материала с сетчато-ячеистой структурой для носителей катализаторов, состоящему из инертного наполнителя - электроплавленного корунда и дисперсной фазы с упрочняющей добавкой. При этом для повышения прочности материала в качестве дисперсной фазы используют высокоглиноземистую фарфоровую массу, в качестве упрочняющей добавки - композицию из MgO+SiC, обеспечивающую образование фазы эвтектического состава в системе MgO-SiO2 при обжиге в интервале температур 1250-1300°С со следующим соотношением компонентов: электроплавленный корунд - 5-20 мас.%, высокоглиноземистая фарфоровая масса - 76,5-90 мас.%, упрочняющая добавка MgO+SiC - 3,5-5 мас.%. Использование указанного состава позволяет изготавливать высокопористые прочные керамические материалы с сетчато-ячеистой структурой с повышенной механической прочностью на сжатие при сохранении общей объемной открытой пористости. 3 пр.

2525396
выдан:
опубликован: 10.08.2014
ШИХТА ДЛЯ ОПТИЧЕСКОЙ КЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAl2O4, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОЙ НАНОКЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAl2O4

Группа изобретений относится к области технологии оптической оксидной керамики на основе алюмомагниевой шпинели MgAl2O4 для использования в оптическом приборостроении. Технический результат заключается в изготовлении оптической керамики высокой степени однородности с высоким светопропусканием. При получении шихты высокой однородности по размеру частиц, легированных спекающей добавкой, исходную шпинель MgAl2O4 в виде однородного по размерам нанопорошка с размером частиц от 10 до 70 нм, смешивают с концентрированным спиртовым раствором борной кислоты и выдерживают в течение 1 ч, при этом на поверхности каждой наночастицы образуется равномерный слой борной кислоты. Способ получения оптической нанокерамики на основе шпинели MgAl 2O4 включает термообработку порции легированного порошка вышеуказанной шихты, который подвергают одноосному горячему прессованию до получения плотной прозрачной нанокерамики. 3 н. и 1 з.п. ф-лы, 2 ил., 3 пр.

2525096
выдан:
опубликован: 10.08.2014
БОРИДНАЯ НАНОПЛЕНКА ИЛИ НАНОНИТЬ И СПОСОБ ИХ ПОЛУЧЕНИЯ (ВАРИАНТЫ)

Изобретения могут быть использованы в области нанотехнологий и неорганической химии. Способ получения боридной наноплёнки или нанонити включает осаждение на корундовую нанонить или на стекловолокно из легкоплавкого стекла в вакууме несколько чередующихся слоев титана и бора, после чего полученную композицию постепенно нагревают до температуры 1500°С. По другому варианту способ получения боридной наноплёнки включает осаждение слоя борида титана нанотолщины на корундовую нанопленку из газовой фазы, содержащей галогенид титана и бор. Изобретения позволяют получить боридные наноструктуры, 4 н.п. ф-лы, 2 пр.

2524735
выдан:
опубликован: 10.08.2014
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

Изобретение предназначено для производства стеновых керамических изделий. Техническим результатом изобретения является повышение морозостойкости и снижение температуры обжига. Сырьевая смесь для изготовления стеновых керамических изделий включает пыль газоочистки производства ферросплавов с содержанием, мас. %: SiO2 - 61,49-79,58 и MgO - 1,58-3,57 и высококальциевую золу-унос от сжигания бурых углей при следующем соотношении компонентов, мас. %: пыль газоочистки производства ферросплавов - 35-55; зола-унос от сжигания бурых углей - 45-65. 2 табл., 1 пр.

2524733
выдан:
опубликован: 10.08.2014
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ НА ОСНОВЕ ВОЛЛАСТОНИТА

Изобретение относится к технологии производства футеровочных и функциональных конструкционных керамических элементов оснастки металлопроводов литейных установок алюминиевой промышленности. Техническим результатом изобретения является снижение плотности теплопроводности, повышение термостойкости и химической устойчивости к алюминиевым расплавам до температуры 1000°C. Способ получения керамических изделий на основе волластонита включает приготовление водного шликера из смеси природного волластонита, глины и вермикулита, формование изделий, сушку и обжиг. Смесь для шликера содержит следующие компоненты, мас. %: волластонит - 50-65; вермикулит - 15-20; глина - 5-10; глиноземистый цемент - 15-20. Причем приготовление шликера осуществляют в смесителе путем перемешивания в течение не более 30 минут с добавлением воды в количестве 40-45% от массы сухих компонентов, а формование изделий проводят с виброутряской в непористые формы. 7 пр.

2524724
выдан:
опубликован: 10.08.2014
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

Изобретение относится к технологии получения композиционных керамических изделий из горных пород с использованием связующего.

Способ получения композиционных керамических изделий, включающий приготовление формовочной массы в качестве наполнителя из горных пород и связующего в виде фосфорной кислоты, выдержку полученной смеси, формование из полученной массы изделий и последующую термообработку, приготовление формовочной массы осуществляют путем классификации по крупности, с выделением фракций наполнителя -1,0+0,315, -0,315+0,08 и -0,08+0,042, при соотношении фракций 6:3:1 в виде кварцевого порфира или гранита или липарита в количестве 65-72 мас.%, который смешивают с фосфорной кислотой в количестве 25-30 мас.% и стекловолокном при отношении длины волокна к его диаметру от 5000 до 6000 в количестве 3-5 мас.%, выдерживают при температуре 20-30°C в течение 25-40 часов, подвергают формованию при давлении 35-45 МПа и последующей термообработке при температуре 350-380°C в течение 1,5 часов. Технический результат предлагаемого способа композиционных керамических изделий заключается в повышении плотности и химической устойчивости изделий, а также снижении водопоглощения спеченных керамических масс. 5 табл.

2524095
выдан:
опубликован: 27.07.2014
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА

Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/Al 2O3, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов. Изобретение направлено на упрощение технических приемов синтеза, использование воздуха в качестве азотсодержащего реагента на стадии синтеза шихты для спекания. Указанный технический результат достигается тем, что в качестве исходной шихты для получения оксинитридной керамики используют продукты сгорания на воздухе композиционных смесей на основе грубодисперсного порошка титана с добавкой 20-40 мас.% мелкодисперсного порошка оксида титана TiO2 и (сверх 100%) 10 мас.% нанопорошка алюминия. Полученную шихту обрабатывают горячим прессованием в атмосфере азота при 1500оС в течение 30 минут. 1 пр.

2524061
выдан:
опубликован: 27.07.2014
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

Изобретение предназначено для производства стеновых керамических изделий. Техническим результатом изобретения является повышение морозостойкости. Сырьевая смесь включает, мас.%: пыль газоочистки производства ферросплавов 63,6 - 68,6; закарбонизованный суглинок 27,3 - 29,4; минеральный шлам газоочистки рекультивируемого шламонакопителя производства алюминия 2,0 - 9,1. Морозостойкость смеси составляет 75 циклов. Обжиг полуфабриката производят при температуре 950оС. 1 табл.

2523526
выдан:
опубликован: 20.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПЛОТНОЙ КЕРАМИКИ ДЛЯ ЭЛЕМЕНТОВ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Изобретение относится к изготовлению газоплотной оксидной керамики со смешанной ионно-электронной проводимостью. Заявлен способ изготовления газоплотной керамики для элементов электрохимических устройств, который включает получение оксидо-органической формовочной массы смешиванием оксидного порошка с органической связкой и пластификатором, формирование заготовок заданной формы и обжиг до спекания. В качестве органической связки используют 4%-ный раствор бутадиен-нитрильного каучука марки СКН-26М, полученный в смеси ацетона и бензина, взятых в объемном соотношении 3:2, в качестве пластификатора используют 5%-ный раствор дибутилфталата в бензине, при этом оксидный порошок смешивают с органической связкой в соотношении 1 мл раствора на 1 г порошка, а с пластификатором - в соотношении 1 мл раствора на 40 г порошка. Заявленным способом можно получить керамику на основе кобальтитов и манганитов лантана-стронция, титанато-ферритов стронция, систем на основе оксида циркония. Технический результат - получение оксидо-органической формовочной массы, обладающей улучшенными пластическими свойствами, пригодными для изготовления керамики для элементов электрохимических устройств без ограничения формы и размеров. 8 ил.

2522492
выдан:
опубликован: 20.07.2014
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО ОПТИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ОКСИДОВ

Изобретение относится к технологии получения поликристаллических оптических материалов и может быть использовано при получении оптической керамики на основе оксидов, а также материалов на основе алюмомагниевой шпинели. Исходное сырье в виде брикета из порошка алюмомагниевой шпинели стехиометрического состава, легированного 1 вес.% фтористого лития, спекают в вакууме при температурах 1100-1500°C. Загружают в форму полученный брикет с диаметром, равным диаметру формы, и производят его уплотнение при температуре 1550-1600°C в течение 5-30 минут при давлении 350-500 кг/см2, выдерживают 30-55 минут и охлаждают. Техническим результатом изобретения является получение поликристаллического оптического материала из алюмомагниевой шпинели, прозрачного в области 25000-2000 см-1, особенно в ИК области спектра. 1 пр., 1 табл.

2522489
выдан:
опубликован: 20.07.2014
СПОСОБ ПОЛУЧЕНИЯ КОНСТРУКЦИОННОЙ АЛЮМООКСИДНОЙ КЕРАМИКИ

Изобретение относится к технологии пористых керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели по пористости и прочности при невысокой теплопроводности (теплоизоляция, фильтры для очистки жидких и газовых сред, элементы комбинированной ударопрочной защиты, матрицы для получения композиционных материалов методом пропитки). Исходный сплав алюминия, содержащий 0,6-10 мас.% магния, обрабатывают водным раствором NaOH. Маточный раствор подвергают гидролизу путем добавления воды с температурой 80-95°C при одновременном воздействии ультразвука (22-45 кГц, 10-35 сек), выделяют осадок, который промывают при pH=7,5-10, высушивают и термообрабатывают на воздухе при температуре 1380-1400°C в течение 60-90 минут. Из полученного продукта готовят шихту, прессуют заготовки при 50-200 МПа. Спекание заготовок проводят на воздухе путем нагрева со скоростью 300-400°C/час до температуры 1410-1420°C, затем до температуры 1510-1550°C со скоростью 80-100°C/час с последующей изотермической выдержкой в течение 30-50 минут. Керамика состава -Al2O3 (80-94 об.%) и Al2 MgO4 (6-20 об.%) имеет общую пористость 37-50%, открытую пористость 30-38%, прочность при изгибе 15-60 МПа, коэффициент теплопроводности на воздухе при 1000°C 2,0-2,5 Вт/м·К. Технический результат изобретения - увеличение открытой пористости материала при сохранении достаточной прочности. 2 з.п. ф-лы, 3 пр., 1 табл.

2522487
выдан:
опубликован: 20.07.2014
ФОТОКАТАЛИТИЧЕСКИЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ, СОДЕРЖАЩИЕ ТИТАН И ИЗВЕСТНЯК

Изобретение относится к области фотокаталитических материалов для применения в составе цемента. Новый фотокаталитический продукт содержит соединения титана в кристаллических фазах: CaTi 2O5 и/или CaTi5O11, а также TiO2, интегрированные с известняком. Продукт получен реакцией известняка с подходящим прекурсором диоксида титана в основном растворе, последующей тщательной промывкой полученного твердого продукта, его сушкой и кальцинированием при температуре 450-700оС. Полученный таким образом композиционный материал, используемый как таковой или в смеси с другими составляющими, проявил неожиданно высокую фотокаталитическую активность. 7 н. и 10 з.п. ф-лы, 6 пр., 4 табл., 19 ил.

2522370
выдан:
опубликован: 10.07.2014
ПОЛИКРИСТАЛЛИЧЕСКИЙ АЛМАЗ

Изобретение относится к получению поликристаллического алмаза, который может быть использован при изготовлении водоструйных сопел, гравировальных резцов для глубокой печати, скрайберов, алмазных режущих инструментов, скрайбирующих роликов. Поликристаллический алмаз получают превращением и спеканием углеродного материала, имеющего графитоподобную слоистую структуру, под сверхвысоким давлением от 12 до 25 ГПа и при высокой температуре от 1800ºC до 2600ºC без добавления спекающей добавки или катализатора, причем спеченные алмазные зерна, составляющие этот поликристаллический алмаз, имеют средний диаметр зерна более 50 нм и менее 2500 нм и чистоту 99% или более, а алмаз имеет диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,9) или менее, и твердость 100 ГПа или более. Полученный алмаз имеет пластинчатую или тонкослоистую структуру, за счет которой такой алмаз меньше предрасположен к разрушению, что предотвращает его неравномерный износ и истирание за короткое время. 6 н. и 7 з.п. ф-лы, 5 табл., 5 пр.

2522028
выдан:
опубликован: 10.07.2014
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

Изобретение предназначено для производства стеновых керамических изделий. Техническим результатом изобретения является повышение прочности и морозостойки изделий. Сырьевая смесь для изготовления стеновых керамических изделий включает пыль газоочистки производства ферросплавов с содержанием, в мас. %: SiO2 - 61,49-79,58 и MgO - 1,58-3,57, закарбонизованный суглинок и высококальциевую золу-унос от сжигания бурых углей при следующем соотношении компонентов, в мас. %: пыль газоочистки производства ферросплавов - 66-68; зола-унос от сжигания бурых углей - 3-7; закарбонизованный суглинок - 27-29. 1 пр., 2 табл.

2521994
выдан:
опубликован: 10.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО МАГНИЙСИЛИКАТНОГО ПРОППАНТА

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. Способ изготовления высокопрочного магнийсиликатного проппанта, включающий помол исходной шихты, ее гранулирование и обжиг полученных гранул, где помол исходной шихты, содержащей 24-28 масс.% MgO, осуществляют до фракции 8 мкм и менее, а гранулирование производят на воде с добавлением натриевой или калиевой соли полиметиленнафталинсульфокислоты или поликарбоксиметиленсульфокислоты в количестве 0,02-0,07% от массы шихты в пересчете на твердое вещество. Изобретение развито в зависимых пунктах формулы. Технический результат - получение среднеплотного высокопрочного проппанта. 2 з.п. ф-лы, 2 пр., 2 табл.

2521989
выдан:
опубликован: 10.07.2014
СПОСОБ ПОЛУЧЕНИЯ КОРДИЕРИТОВОЙ МАССЫ ДЛЯ ТЕХНИЧЕСКОЙ КЕРАМИКИ

Изобретение относится к производству технической керамики кордиеритового состава, обладающей высокой термостойкостью, прочностью и хорошими диэлектрическими свойствами. Получаемую согласно способу кордиеритовую массу можно использовать для получения изоляторов, носителей катализаторов для очистки выхлопных газов двигателей внутреннего сгорания, в фильтрах для очистки воды, керамических изделий для обжиговых печей и др. В заявляемом способе в качестве минерала силлиманитовой группы используют обогащенный силлиманитовый концентрат, содержащий 10-15 мас.% кварца, который смешивают с тальком в соотношении 1:(0,7-0,9) мас.%. Измельчение и активацию полученной сырьевой смеси проводят в проточной центробежной дисковой мельнице, обеспечивающей механическое воздействие на смесь с центробежной силой, соответствующей ускорению 50-60 g, и времени пребывания смеси в зоне обработки 2-5 мин, обжиг сырьевой смеси, обработанной в мельнице, проводят при температуре 1200-1300°C в течение 1-2 часов. Техническим результатом заявляемого технического решения является получение кордиеритовой массы для изготовления керамики из более доступного исходного сырья и более экономичным, чем в прототипе, способом. 1 табл.

2521873
выдан:
опубликован: 10.07.2014
Наверх