Системы с использованием отражения или вторичного излучения акустических волн, например системы гидроакустических станций – G01S 15/00

МПКРаздел GG01G01SG01S 15/00
Раздел G ФИЗИКА
G01 Измерение
G01S Радиопеленгация; радионавигация; измерение расстояния или скорости с использованием радиоволн; определение местоположения или обнаружение объектов с использованием отражения или переизлучения радиоволн; аналогичные системы с использованием других видов волн
G01S 15/00 Системы с использованием отражения или вторичного излучения акустических волн, например системы гидроакустических станций

G01S 15/02 .с использованием отражения акустических волн
 15/66 имеет преимущество
G01S 15/04 ..системы обнаружения цели
G01S 15/06 ..системы для определения местоположения цели
G01S 15/08 ...системы для измерения только дальности
косвенное измерение  15/46
G01S 15/10 ....с использованием передачи прерывистых импульсно-модулированных колебаний
определение дальности путем измерения фазы  15/32
G01S 15/12 .....в которых частота повторных импульсов изменяется с целью обеспечения требуемой временной зависимости между моментом передачи одного импульса и моментом приема отраженного предшествующего импульса
G01S 15/14 .....в которых время начала и конца импульсов напряжения или тока непосредственно связано с моментами передачи импульса и приема отраженного сигнала
G01S 15/18 .....в которых используются стробирующие импульсы
G01S 15/32 ....с использованием передачи непрерывных немодулированных колебаний и колебаний, модулированных по амплитуде, частоте или фазе
G01S 15/34 .....в которых передается частотно-модулированный зондирующий сигнал, а принятый или выделенный из него сигнал смешивается с сигналом, сформированным в местном гетеродине одновременно с передачей зондирующего импульса сигналом, в результате чего образуется сигнал в форме биений
G01S 15/36 .....со сравнением фаз принятого и одновременно переданного сигналов
G01S 15/42 ...одновременное измерение дальности и других координат
косвенное измерение  15/46
G01S 15/46 ...косвенное определение данных местоположения
G01S 15/50 ..измерительные системы, основанные на относительном перемещении цели
G01S 15/52 ...для распознавания различия между неподвижным и подвижным объектами или между объектами, движущимися с различными скоростями
G01S 15/58 ...для определения скорости или траектории движения; для определения знака направления движения
G01S 15/60 ....в которых передатчик и приемник установлены на движущихся объектах, например для определения скорости летательных аппаратов относительно земли, угла сноса, наземного курса объекта
G01S 15/62 ....определение знака направления движения
G01S 15/66 .звуколокационные следящие системы
G01S 15/74 .системы, использующие вторичное излучение акустических волн, например системы распознавания типа "свой - чужой"
G01S 15/87 .комбинации систем гидроакустических станций
G01S 15/88 .системы, специально предназначенные для особых применений
G01S 15/89 .системы, предназначенные для картографирования отображения
G01S 15/93 .системы, предназначенные для предотвращения столкновений
G01S 15/96 .системы, предназначенные для нахождения косяков рыб (рыбных скоплений)

Патенты в данной категории

УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПОПРАВОК К ГЛУБИНАМ, ИЗМЕРЕННЫМ ЭХОЛОТОМ ПРИ СЪЕМКЕ РЕЛЬЕФА ДНА АКВАТОРИИ

Изобретение относится к области использования навигационных и промерных эхолотов и может быть применено для их тарировки. Техническим результатом изобретения является повышение точности тарирования эхолотов и снижение трудозатрат на ее проведение. Технический результат достигается тем, что для тарировки эхолота предлагается использовать лазерное тарирующее устройство, работающее в сине-зеленом диапазоне частотного спектра излучения. Лазерный импульс в этом диапазоне способен проникать сквозь водную среду и, отразившись от дна, приниматься фотоприемным устройством. Зная скорость прохождения лазерного излучения через воду и время прохождения прямого и отраженного сигнала, представляется возможным определить глубину места под судном с более высокой точностью, чем навигационным эхолотом. 1 ил.

2529626
выдан:
опубликован: 27.09.2014
СПОСОБ ОБРАБОТКИ ГИДРОЛОКАЦИОННОЙ ИНФОРМАЦИИ

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности, формирование цифрового массива данных с выхода тракта когерентной обработки по каждому пространственному каналу, последовательный вывод цифровых отсчетов на индикатор, определение порога автоматического обнаружения по среднему значению амплитуд цифровых отсчетов первого и второго циклов обработки по всем пространственным каналам, вывод цифровых отсчетов на индикатор осуществляется по правилу А=Аотсч/ (Г-К), где А амплитуда отсчета, выводимая на индикатор, Аотсч - амплитуда исходного цифрового отсчета, Г - параметр, определяемый оператором как глубина регулировки усиления, К - номер цикла обработки, порог автоматического обнаружения выбирается из условия минимума пропуска эхосигнала от цели, формирование общего цифрового массива данных с выхода тракта когерентной обработки по всем пространственным каналам от момента излучения до момента достижения зондирующим сигналом установленной шкалы работы, определение отсчетов, превысивших порог, определение номера пространственного канала М, определение временного положения отсчета Т, проведение классификации по цифровым отсчетам обнаруженной цели из общего цифрового массива по М пространственным каналам, средний канал из которых равен измеренному каналу, и во временном окне, равном Н циклам набора временной реализации, автоматическое определение классификационных признаков и автоматическое принятие решения о классе цели, вывод результата обработки по обнаруженной цели на индикатор с указанием номера цели, измеренных координат М и Т, классификационных признаков и класса обнаруженной цели, при очередном обнаружении превышения порога процедура повторяется до окончания шкалы дистанции и по совокупности всех обнаруженных целей формируется банк классификации. Технический результат: обеспечение обнаружения и классификации обнаруженных целей. 1 ил.

2529441
выдан:
опубликован: 27.09.2014
СПОСОБ ОБРАБОТКИ ЭХОСИГНАЛА ГИДРОЛОКАТОРА

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня помехи, как результат суммирования всех отсчетов по первому циклу приема по всем пространственным каналам, вычисляют порог обнаружения по среднему значению всех отсчетов Аср, производят выбор минимального значения в каждом наборе временных отсчетов огибающей последовательно по всем пространственным каналам по правилу 0 Амин<Аср, запоминают номера пространственных каналов, в которых обнаружены минимальные значения огибающих, производят выбор максимального отсчета Амакс в каждом наборе отсчетов огибающей по всем пространственным каналам, проводят прореживания с оставлением минимального отсчета по правилу п последовательных отсчетов выбирают наименьший, и максимального отсчета по правилу из n последовательных отсчетов выбирают максимальный, в каждом наборе временных отсчетов огибающей по всем пространственным каналам, производят автоматическое обнаружения превышения эхосигналами выбранного порога обнаружения Амакс>Апорог=кАср последовательно по всем пространственным каналам статического веера характеристик направленности, измеряют и запоминают амплитуды и номера отсчетов сигналов, превысивших порог обнаружения, измеряют и запоминают номера пространственных каналов, в которых произошло обнаружение сигнала, измеряют угловую протяженность УПмак объекта по количеству пространственных каналов, превысивших порог обнаружения, определяют номера отсчетов и пространственных каналов, в которых не произошло превышение выбранного порога и уровень сигнала в которых близок к 0, определяют угловую протяженность УПмин области минимальных отсчетов по числу пространственных каналов, в которых 0 Амин<Аср, и при совпадении угловых протяженностей принимают решения о наличии тени объекта. Технический результат: повышение информативность входной информации за счет выделения тенеграфических особенностей эхосигнала от объекта.1 ил.

2528556
выдан:
опубликован: 20.09.2014
СПОСОБ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ЭКСПЛУАТАЦИИ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

Способ заключается в сужении прилегающей ко всем водоподводящим каналам части водоема-охладителя 4 путем перегораживания его части искусственной дамбой. Способ включает создание первого 28 рубежа безопасности и первой физической защиты 36 от проникновения биологических подводных объектов (БПО) и средств их доставки, первой очистки оборотной технической воды 37 от механических (МПР) и биологических (БПР) примесей, первой защиты рыб, в том числе ее молоди, первого охлаждения оборотной технической воды. Создают вторые 29 идентичные друг другу и аналогичные по назначению первым рубежи безопасности на входе каждого водоподводящего канала и последующего обеспечения: вторую физическую защиту 39 от проникновения БПО, вторую очистку оборотной технической воды от МПР и БПР, вторую защиту рыб, второе охлаждение оборотной технической воды. Создают третьи 30 идентичные друг другу рубежи безопасности на входе в водозаборные окна и последующего обеспечения: третью физическую защиту от проникновения БПО, третью очистку оборотной технической воды от МПР и БПР, третью защиту рыб, третье охлаждение оборотной технической воды и ее первой акустической дегазации. Создают четвертые 31 идентичные друг другу рубежи безопасности на идентичных друг другу выходах водоотводящих каналов и последующего обеспечения: четвертую физическую защиту от проникновения БПР, четвертую очистку оборотной технической воды от МПР и БПР, четвертую защиту рыб и четвертое охлаждение оборотной технической воды. Создают пятый 32 рубеж безопасности в общем водоотводящем канале и последующее обеспечение пятой физической защиты от проникновения БПО и средств их доставки, пятую очистку оборотной технической воды от МПР и БПР, пятую защиту рыб, особенно в период их нереста, и пятое охлаждение оборотной технической воды. Технический результат заключается в дальнем обнаружении, достоверной классификации и точном определении пространственных координат «акустически малозаметных» БПО в условиях повышенных окружающих шумов техногенного и природного характера, а также интенсивной реверберации на дальней дистанции; в гидроакустическом вытеснении БПО, а также выводе из строя систем управления подводных носителей БПО; в механической защите рубежа от проникновения надводных и подводных носителей БПО; в многоэтапной (не менее двух этапов) очистке воды от МПР и БПР, в том числе от биообрастателей; в многоэтапном охлаждении воды, используемой для технологических целей. Обеспечивается экологическая безопасность для окружающей природной среды. 12 ил.

2528451
выдан:
опубликован: 20.09.2014
АКТИВНЫЙ ГИДРОЛОКАТОР С КЛАССИФИКАЦИЕЙ ОБЪЕКТА

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Сущность: активный гидролокатор с классификацией объекта содержит последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, последовательно соединенные приемную акустическую антенну, устройство обработки эхо-сигналов от объекта и устройство измерения классификационного параметра, а также индикатор. В него введены последовательно соединенные блок определения РапостN, где РапостN - апостериорная плотность вероятности класса объекта по текущей посылке N, блок определения РапостF, где Рапост F - апостериорная плотность вероятности класса объекта по совокупности посылок F, и блок выработки решения о классе объекта по совокупности посылок, блок памяти Рапр, где Рапр - априорная плотность распределения величины классификационного параметра. Техническим результатом изобретения является повышение вероятности правильной классификации обнаруженного объекта путем обеспечения возможности определения класса обнаруженного объекта по совокупности посылок. 1 ил.

2528114
выдан:
опубликован: 10.09.2014
АКТИВНЫЙ ГИДРОЛОКАТОР

Использование: гидроакустическая техника, а именно область активной гидролокации, включая активные гидролокаторы, предназначенные для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Технический результат: обеспечивается высокая вероятность правильной классификации обнаруженного объекта. Это достигается путем реализации возможности выработки класса обнаруженного объекта по совокупности посылок с идентификацией эхо-сигналов в серии посылок. 1 ил.

2528113
выдан:
опубликован: 10.09.2014
СПОСОБ ИЗМЕРЕНИЯ ГЛУБИНЫ ОБЪЕКТА И ГИДРОЛОКАТОРОМ

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами. Технический результат - обеспечение обнаружения и классификации источника утечки газа подводного газопровода и определения местоположения объекта утечки газа. Для этого излучают зондирующий сигнал, принимают эхосигнал статическим веером характеристик направленности в горизонтальной плоскости, производят многоканальную обработку по всем характеристикам направленности, выбирают порог в каждом канале, определяют времена начала Tмин и времена окончания эхосигнала Tмакс в каждом пространственном канале, выбирают канал, имеющий максимальное время задержки окончания эхосигнала Tмакс и соответствующее этому каналу минимальное время задержки начала эхосигнала T мин, вычисляют дистанцию Днач=Tмин 0,5C, вычисляют дистанцию по окончании эхосигнала Доконч =Tмакс0,5C, а глубину местоположения начала эхосигнала определяют по формуле , где H - глубина местоположения начала газовой пелены; Доконч - дистанция, соответствующая максимальному времени окончания эхосигнала или выхода газовой пелены из трубы; Днач - дистанция, соответствующая минимальному времени начала эхо-сигнала или выхода газовой пелены на поверхность; C - скорость распространения звука в районе работы. 1 ил.

2527136
выдан:
опубликован: 27.08.2014
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТОВ В ПАССИВНОЙ СИСТЕМЕ МОНИТОРИНГА

Использование: относится к области пассивной локации, в частности гидролокации. Сущность: в способе определения местоположения объектов в пассивной системе мониторинга осуществляют приём сигналов аппаратурой разнесенных позиций, пространственную селекцию по принятым сигналам в каждой из приемных позиций, некогерентное накопление по времени каждого из результатов пространственной селекции, принятие решения об обнаружении отметок целей по результатам накопления по времени и формирование по результатам обнаружения пеленгационных линий положения в не менее чем двух позициях, определение расстояний между каждой из не менее чем двух приемных позиций системы и точками пересечения пеленгационных линий положения, сформированных в этих позициях, измерение уровней принимаемых этими позициями сигналов по тем результатам некогерентного накопления по времени, по которым обнаружены отметки, пересчет каждого из этих уровней к точкам пересечения пеленгационных линий положения, соответствующих указанным отметкам, формирование функций разности результатов пересчета уровней сигналов от каждой из указанных приемных позиций к одной и той же точке пересечения этих линий положения для этих точек и определение координат целей как координат тех точек пересечения пеленгационных линий положения, для которых функции разности результатов пересчета уровней сигналов будут больше порога. Технический результат: обеспечение возможности определения местоположения при нахождении в зоне действия системы более одного шумящего объекта. 2 ил.

2526896
выдан:
опубликован: 27.08.2014
АККУСТИЧЕСКОЕ УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ

Использование: геология, гидроакустика. Сущность: в акустическом устройстве определения дальности увеличивается точность определения дальности благодаря введению генератора подстраиваемой частоты, индикатора, максимального сигнала, блока определения заднего фронта сигнала, панели выдачи кода поправки и вычитателя, при этом выход генератора подстраиваемой частоты соединен с входом индикатора и с входом акустического широкополосного приемника низкочастотного диапазона, а вход генератора соединен с выходом этого приемника, соединенного также входом индикатора максимального сигнала и через блок определения заднего фронта сигнала со вторым входом преобразователя временного рассогласования, группа выходов которого соединена с первой группой входов вычитателя, имеющего вторую группу входов, соединенную с группой выходов панели выдачи кода поправки и имеющего группу выходов, соединенную с группой входов индикатора. Технический результат: повышение точности. 1 ил.

2525472
выдан:
опубликован: 20.08.2014
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РАЗМЕРНО-КОЛИЧЕСТВЕННЫХ ХАРАКТЕРИСТИК ВЗВЕШЕННЫХ В ВОДЕ ЧАСТИЦ

Изобретение относится к океанологическим исследованиям. Устройство включает в себя средство для генерации параллельного потока импульсов оптического излучения, средство для формирования оптическим путем реперного объема прямоугольного сечения, средство для перемещения реперного объема, средство для приема и преобразования оптического излучения в электрические сигналы и средство для регистрации изменения амплитуды электрических импульсов, снабженное средством для определения разности между сигналом в отсутствие импульсов и сигналом, полученным во время действия импульсов, и средством, формирующим временной интервал на время регистрации частиц. При этом отношение размеров сторон прямоугольного сечения реперного объема равно отношению максимальной и минимальной границ размерного диапазона регистрируемых частиц. В устройство введен гидроакустический канал оценки, состоящий из многолучевого эхолота, антенны накачки параметрического профилографа, низкочастотной приемной антенны параметрического профилографа, генератора зондирующих импульсов, приемника эхосигналов, блока обработки акустических сигналов, пульта управления и индикации с интерфейсным блоком и сетевым концентратором, двух гидролокаторов бокового обзора, антенны которых установлены соответственно по правому и левому бортам. Технический результат - расширение функционалных возможностей. 1 ил.

2524560
выдан:
опубликован: 27.07.2014
СПОСОБ ОБЕСПЕЧЕНИЯ НАВИГАЦИИ АВТОНОМНОГО ПОДВОДНОГО РОБОТА

Изобретение относится к средствам подводной навигации и может быть использовано для навигационного обеспечения автономных подводных роботов (АПР) с неограниченным и произвольным районом работы. Способ обеспечения навигации автономного подводного робота, положение которого контролируется с борта обеспечивающего судна, при котором на борту автономного подводного робота счисляют траекторию его движения по данным датчиков скорости, курса и глубины, принимают навигационные сигналы, излучаемые гидроакустическим маяком с известными координатами, измеряют время распространения акустического сигнала между автономным подводным роботом и обеспечивающим судном, а на его основе и расстояние между автономным подводным роботом и гидроакустическим маяком и используют величину этого расстояния для получения текущих пространственных координат автономного подводного робота, при этом текущие координаты гидроакустического маяка определяют средствами судовой навигации и передают их по гидроакустическому каналу связи на борт автономного подводного робота в составе навигационных сигналов, излучаемых гидроакустическим маяком, а полученные на борту автономного подводного робота данные обработки информации, содержащие оценку его координат, в составе обратного навигационного сигнала по гидроакустическому каналу передают на обеспечивающее судно, отличается тем, что обеспечивающее судно маневрирует по водной поверхности относительно траектории движения автономного подводного робота, пересекая ее проекцию на водную поверхность и перемещаясь в конкретную точку водной поверхности, при этом для определения координат этой точки используют информацию о текущих расстояниях между гидроакустическим маяком и автономным подводным роботом, а также оценку ошибки определения местоположения автономного подводного робота, поступающую на борт обеспечивающего судна от автономного подводного робота в составе обратного навигационного сигнала. Технический результат: повышение точности определения текущего местоположения АПР в пространстве без использования гидроакустической навигационной системы с ультракороткой базой, которая не обеспечивает необходимую точность определения пеленга на гидроакустический маяк (направление в пространстве от АПР на ГМ) и, соответственно, требуемую точность определения местоположения АПР. 1 ил.

2524052
выдан:
опубликован: 27.07.2014
СИСТЕМА ОБНАРУЖЕНИЯ ПОМЕХ ДЛЯ ПОСАДКИ И ВЗЛЕТА ВЕРТОЛЕТА

Изобретение относится к области авиации, в частности к системам бортового оборудования вертолетов. Система обнаружения помех для посадки и взлета вертолета включает ультразвуковые устройства сканирования (1), каждое из которых состоит, по меньшей мере, из средств для передачи ультразвукового сигнала в направлении вниз и получения отраженного ультразвукового сигнала. Средства передачи и получения сигнала установлены, по меньшей мере, в лопастях (2) несущего винта вертолета (3) на удалении от оси его вращения или смежно их концам и связаны с бортовой вычислительной системой вертолета или с самостоятельной вычислительной системой для визуального отображения данных на доступном пилоту мониторе о рельефе расположенной под вертолетом поверхности и/или данных об опасных препятствиях. Повышается точность данных о рельефе поверхности под вертолетом на площади, необходимой для выполнения маневрирования при выполнении взлета и посадки. 4 з.п. ф-лы, 13 ил.

2523855
выдан:
опубликован: 27.07.2014
СПОСОБ ЗАЩИТЫ ПОДВОДНЫХ КОНСТРУКЦИЙ И ОБОРУДОВАНИЯ ОТ БИООБРАСТАНИЯ

Изобретение используется для защиты подводных конструкций и оборудования от их биологического обрастания. На выходе из отводного канала формируют и излучают энергетические, информационные, высокоградиентные и биорезонансные сигналы, которые воздействуют на рыб и изменяют их поведенческие характеристики. Одновременно с этим излучают шумовые сигналы и формируют интенсивную воздушно-пузырьковую завесу, которая поднимает на поверхность биообрастатели и примеси. Воздушно-пузырьковая завеса и шумовые акустические волны являются дополнительными преградами для скопления рыб, находящихся вблизи выхода отводящего канала с перегретой водой. На поверхности воды разворачивают боновое заграждение, образующее сплошную преграду для поднятых на поверхность биообрастателей и примесей, а затем собирают их в виде грязной пены. При помощи мобильного передвижного комплекса, оснащенного акустическими излучателями, принудительно перемещают скопление рыб - естественных хищников биообрастателей, из удаленной части водоема в область, прилегающую к подводящему каналу, путем непрерывного излучения энергетических, информационных, высокоградиентных и биорезонансных сигналов. Одновременно с этим с помощью второго акустического модуля и второго акустико-пузырькового модуля, формируют акустический барьер для рыб - естественных хищников биообрастателей, а также акустико-пузырьковую завесу в наиболее узкой части водоема. Охлаждаемую в водоеме оборотную воду дополнительно очищают от биообрастателей и примесей, а рыб - не выпускают из данной акватории водоема. Одновременно с этим с помощью третьего акустического модуля и третьего акустико-пузырькового модуля, формируют акустический барьер для мальков рыб - естественных хищников биообрастателей, а также акустико-пузырьковую завесу на входе в подводящий канал объекта энергетического комплекса. В результате охлажденную в водоеме оборотную воду дополнительно очищают от биообрастателей и примесей. Одновременно с этим при помощи интенсивных ультразвуковых волн и низкочастотных электромагнитных волн осуществляют воздействие на биообрастателей на входе в водозаборное окно - с одновременной очисткой механической защитной решеткой от биообрастателей, и на выходе из подводящей трубы подводной конструкции. Одновременно с этим при помощи акустического фильтра, установленного на входе в оборудование объекта энергетического комплекса, осуществляют тонкую очистку воды от биообрастателей, а также от биологических и механических примесей. Обеспечивается повышение качества очистки и надежности защиты подводных конструкции и оборудования от биообрастания. 9 ил.

2523841
выдан:
опубликован: 27.07.2014
ЭХОЛОТ С ЛЕДОВОЙ ЗАЩИТОЙ

Использование: гидроакустика, а именно в гидроакустических системах определения глубины, и может быть применен для автоматического адаптивного обнаружения эхо-сигналов от дна и автоматического измерения глубины в условиях, когда требуется механическая защита излучающей поверхности электроакустического преобразователя. Сущность: в эхолот вводят блок прямого цифрового синтезатора частоты, выход которого подключен к входу передатчика, а управляющий вход подключен к микроконтроллеру. Блок прямого цифрового синтезатора частоты позволяет путем регулировки частоты излучения исключить влияние изменяющихся параметров защитной пластины на максимально возможную измеряемую глубину эхолотом. Технический результат: исключение влияния изменяющихся параметров защитной пластины излучающей поверхности электроакустического преобразователя на максимально возможную измеряемую глубину эхолотом путем изменения частоты излучения эхолота. 2 ил.

2523104
выдан:
опубликован: 20.07.2014
ЭХОЛОТ

Использование: изобретение относится к гидроакустическим системам определения глубины и к системам навигации и может быть использовано в эхолотах с автоматическим адаптивным обнаружением эхо-сигналов от дна и измерением глубины с привязкой к географическим координатам места измерения. Сущность: эхолот содержит ЭВМ 1, усилитель 2 мощности, приемник 3 акустических эхо-сигналов, приемник 4 сигналов спутниковых радионавигационных систем, переключатель 5 «прием-передача», электроакустический преобразователь 6, аналого-цифровой преобразователь 7 и дисплей 8. Первый вход ЭВМ 1 соединен с выходом преобразователя 7, а второй - с выходом приемника 4. Первый выход ЭВМ 1 соединен с входом дисплея 8, второй - с входом управления приемника 3, третий - с входом усилителя 2, а четвертый - с управляющим входом переключателя 5. Сигнальный вход переключателя 5 соединен с выходом усилителя 2, вход-выход - с входом-выходом преобразователя 6, а выход - с сигнальным входом приемника 3, выход которого соединен с входом преобразователя 7. Технический результат: повышение помехозащищенности и надежности эхолота, расширение его функциональных возможностей. 1 ил.

2523101
выдан:
опубликован: 20.07.2014
УСТРОЙСТВО ДЛЯ УНИЧТОЖЕНИЯ ЯКОРНЫХ МИН

Изобретение относится к морской технике, в частности к морскому подводному оружию. Устройство содержит захват и элемент сигнализации о местоположении мины, выполненный в виде гидроакустического маяка. Дополнительно установлен резак с приводом, управляемый по команде с обеспечивающего судна. Гидроакустический маяк содержит источник электропитания, каналы излучаемого и принимаемого сигналов, шифратор и датчик давления. Повышается эффективность уничтожения якорной мины за счет определения её местоположения после перерезания ее минрепа. 2 ил.

2522697
выдан:
опубликован: 20.07.2014
УСТРОЙСТВО ОПЕРАТИВНОГО ОСВЕЩЕНИЯ ПОДВОДНОЙ ОБСТАНОВКИ В АКВАТОРИЯХ МИРОВОГО ОКЕАНА

Использование: в технических средствах для оперативного освещения подводной обстановки в акваториях Мирового океана. Сущность: предлагается использовать устройство, представляющее собой синтез транспортировочного модуля, укомплектованного электрической энергосиловой установкой (ЭСУ) и бортовой электронной аппаратурой (БЭА), осуществляющей управление системами АНПА, включая ЭСУ и систему БЭА. В БЭА встроено устройство излучения зондирующих низкочастотных посылок и приема поступающей из моря информации, конструктивно оформленное на консолях носовых и кормовых рулевых устройств автономного, необитаемого, подводного аппарата (АНПА). Такая конструкция заявляемого устройства должна осуществлять обнаружение и выделение в эхо-сигнале (на фоне естественных (реверберации и шумы моря) и искусственных помех на дистанциях до 5000 м) характерных признаков подводных объектов за счет взаимодействия падающей первичной волны и вторичных волн, образующихся внутри и вокруг этих объектов, и наличия результатов этого взаимодействия в спектре и фазе эхо-сигнала. Расшифровка устройством (без вмешательства человека) заданных информационных признаков подводных объектов позволяет с большей вероятностью преодолеть существующую неопределенность в оценке подводной обстановки. Технический результат: улучшение помехоустойчивости и помехозащищенности АНПА при повышенной дистанции обнаружения до 5 км и увеличенном количестве обнаруженных объектов, повышение производительности поиска в любом направлении и оперативности. 2 з.п. ф-лы, 11 ил.

2522168
выдан:
опубликован: 10.07.2014
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИН В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ ПРИ ОБСЛЕДОВАНИИ РЕЛЬЕФА ДНА ГИДРОЛОКАТОРОМ БОКОВОГО ОБЗОРА

Изобретение относится к области гидроакустики. Сущность: способ определения глубин в реальном масштабе времени при обследовании рельефа дна гидролокатором бокового обзора с последующим его восстановлением, включающий измерения времени задержки синфазных сигналов донной реверберации, принимаемых двумя антеннами, разнесенными по вертикали на несколько длин волн упругих колебаний, и разрешение неоднозначности измерений, вычисление глубин, в котором для достижения технического результата при каждом совпадении фаз интерферирующих сигналов регистрируют мгновенное значение частоты сигнала в нижнем канале, измеряют время запаздывания появления сигнала в верхнем канале с тем же значением мгновенной частоты, измеренное значение времени запаздывания умножают на значение рабочей частоты интерферометра, определяют порядковую нумерацию ряда измерений задержки прихода синфазных сигналов в период каждого зондирования в реальном масштабе времени, глубины вычисляют, соответствующие каждой интерференционной полосе, а при последующем восстановлении рельефа дна по измеренным глубинам выполняют оценку репрезентативности (значимости) критических точек рельефа путем представления гладкой непрерывной поверхности рельефа дна деревом Кронрода-Риба. Гидролокатор бокового обзора включает генератор 1 зондирующих импульсов, приемо-передающую верхнюю антенну 2, схему 3 измерения времени tn, приемо-передающую нижнюю антенну 4, интерферометр 5, схему 6 измерения времени tn, селектор 7, частотный детектор 8, опорный генератор 9, запоминающее устройство 10, схему 11 сравнения амплитуд, частотный детектор 12, вычислитель 13, антенный коммутатор 14, устройство 15 отображения и документирования. Технический результат: повышение достоверности определения глубин посредством гидролокатора бокового обзора и последующего восстановления рельефа дна по измеренным глубинам посредством гидролокатора бокового обзора. 7 ил., 2 табл.

2521127
выдан:
опубликован: 27.06.2014
СПОСОБ ПОДАЧИ СИГНАЛОВ ОБ АВАРИИ ПОДО ЛЬДОМ С ПОМОЩЬЮ ГИДРОАКУСТИЧЕСКОГО СИГНАЛИЗАТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области поисковых и подводно-технических работ при наличии сплошного ледового покрова в районе нахождения аварийного подводного объекта, например, подводной лодки. Способ основан на передаче акустических сигналов в водной среде. Сигнализатор связывают с буем прочным тросиком, например, из кевлара, выстреливают изделие через торпедный аппарат или отдают стопором из корпуса носителя, при этом буй подвсплывает к ледовой поверхности, а сигнализатор, оказавшийся на нужном горизонте распространения звуковых волн, запускают кодовым сигналом на излучение. Устройство для подачи сигнала об аварии подо льдом по гидроакустическому каналу путем установки сигнализатора на заданной глубине включает плавучий буй. Буй оснащен синтетическим тросиком заданной длины, который закреплен на сигнализаторе для удержания его на глубине зоны подводного звукового канала, при этом буй всплыл и прижат к нижней кромке льда. Значительно облегчается проведение поисково-спасательной операции по обнаружению подводных судов в условиях Арктики за счет увеличения дальности прохождения сигнала аварийного сигнализатора. 2 н.п. ф-лы, 1 ил.

2520985
выдан:
опубликован: 27.06.2014
СИСТЕМА ДЕМОДУЛЯЦИИ СИГНАЛА

Система демодуляции сигнала относится к области демодуляции модулированного по фазе или по частоте сигнала и может использоваться для обнаружения движения объекта. Достигаемый технический результат - распознавание точной частоты конкретной составляющей сигнала в принятом сигнале с множественными составляющими. Система демодуляции сигнала содержит: комплексный демодулятор (110), имеющий первый вход (111) для приема модулированного по фазе входного сигнала (Si) и сконструированный для выполнения комплексного перемножения этого сигнала с аппроксимацией обратной величины фазовой модуляции; устройство (130) анализа спектра, принимающее демодулированный умноженный сигнал, произведенный комплексным демодулятором (110), и способное анализировать частотный спектр демодулированного умноженного сигнала, контроллер (140) модуляции. 3 н. и 12 з.п. ф-лы, 14 ил.

2520357
выдан:
опубликован: 20.06.2014
СПОСОБ СЪЕМКИ РЕЛЬЕФА ДНА АКВАТОРИИ И УСТРОЙСТВО ДЛЯ СЪЕМКИ РЕЛЬЕФА ДНА АКВАТОРИИ

зобретение относится к гидрографии, в частности к способам и техническим средствам барометрической съемки рельефа дна путем определения глубин на заданной акватории с определением их геодезических координат. Техническим результатом изобретения является расширение функциональных возможностей с одновременным повышением достоверности и информативности при картировании рельефа дна акватории по измеренным глубинам посредством многолучевого эхолота. В отличие от известного способа одновременно с излучением гидроакустических сигналов в направлении дна выполняют магнитную съемку посредством градиентометра, буксируемого на расстоянии 5 м от дна, сейсмоакустическое профилирование посредством профилографа с рабочей частотой 3,5кГц, измеряют уровень моря, при обработке значений измеренных глубин дополнительно выполняют линейную интерполяцию полученной поверхности дна через триангуляции, при картировании полученной информации с определением геодезических координат измеренных глубин выполняют оценку степени пространственной однородности покрытия точками измерения района промера путем определения внешних границ (контура) области промера посредством устройства для съемки рельефа дна акватории, состоящим из приемоизлучающей антенны, передающего блока, приемоизмерительного блока, блока управления, блока определения средней скорости распространения звука в воде, блока сбора, обработки информации и картирования рельефа дна, многолучевого эхолота, модуля визуализации области рельефа, гидроакустического доплеровского лага, приемника спутниковой навигационной системы, курсовой системы, измерителя качки, отличающегося тем, что в устройство для съемки рельефа дна дополнительно введены буксируемый градиентометр, профилограф и измеритель уровня моря, соединенные своими выходами с входами блока сбора, обработки информации и картирования рельефа дна. 7 ил.

2519269
выдан:
опубликован: 10.06.2014
СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ

Использование: изобретение относится к вооружению подводных лодок, а именно к защите подводных лодок от торпед или мин, преимущественно от широкополосных мин-торпед. Сущность: способ защиты подводной лодки от широкополосной мины-торпеды содержит обнаружение и определение угловых координат в режиме шумопеленгования торпеды, вышедшей из стартового контейнера и наводящейся на подводную лодку, ее классификацию, выработку данных стрельбы, производство выстрела устройства, несущего реактивные снаряды, с приходом устройства в расчетную точку на пути его движения пуск реактивных снарядов, эпицентры взрывов которых, равномерно, исключая образование непораженных участков, распределяются в объеме ограниченного водного пространства, сформированного вокруг предварительно рассчитанной точки встречи устройства и торпеды, путем постановки завес из силового поля взрывов реактивных снарядов на пути движения торпеды в телесном угле, обращенном вершиной к подводной лодке и ограниченном усеченной конической поверхностью с осью симметрии, совпадающей с направлением на источник шума, при этом середина оси симметрии совпадает с расчетной точкой встречи устройства с торпедой. Определяется дистанция от подводной лодки до торпеды методом активной гидролокации, при этом излучение зондирующего сигнала и прием отраженного от торпеды (гидролокационного) сигнала осуществляется с помощью узконаправленных антенн, акустические оси которых устанавливаются в направлении на торпеду, предварительно определенном методом шумопеленгования. Технический результат: упрощение реализации способа и повышение эффективности защиты подводной лодки.1 ил.

2517782
выдан:
опубликован: 27.05.2014
ГИДРОАКУСТИЧЕСКАЯ НАВИГАЦИОННАЯ СИСТЕМА

Использование: изобретение относится к области гидроакустики и может быть использовано при разработке гидроакустических навигационных систем повышенной точности, работающих при наличии отражающих границ раздела. Сущность: гидроакустическая навигационная система содержит навигационную базу, включающую расположенный на береговом посту блок формирования излучаемых сигналов, выходы которого соединены с расположенными на дне симметрично относительно судового хода двумя гидроакустическими излучателями с различными несущими частотами излучаемых сигналов, а также бортовую аппаратуру, включающую приемоусилительный тракт, блок обработки принятых сигналов и индикатор, при этом приемоусилительный тракт выполнен одноканальным в виде ненаправленного гидрофона с подключенным к его выходу предварительным усилителем, а блок обработки принятых сигналов выполнен в виде подключенных к выходу предварительного усилителя двух полосовых фильтров, настроенных на частоты соответствующих гидроакустических излучателей, мультипликативного смесителя, подключенного к выходам полосовых фильтров, фильтра нижних частот, подключенного к выходу мультипликативного смесителя, частотных фильтров-дискриминаторов, входы которых подключены к выходу фильтра нижних частот, и сумматора, входы которого подключены к выходам частотных фильтров-дискриминаторов, а выход - к входу индикатора. Техническим результатом изобретения является повышение надежности определения навигационных параметров и уменьшение трудоемкости выполнения калибровки системы. 1 ил.

2517775
выдан:
опубликован: 27.05.2014
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПОГРУЖЕНИЯ ОБЪЕКТА

Использование: изобретение относится к области гидроакустики и может быть использовано при разработки гидроакустической аппаратуры, предназначенной для освещения подводной обстановки. Сущность: в способе определения глубины погружения объекта гидролокатором излучают зондирующий сигнал, осуществляют прием эхо-сигнала вертикальной линейной антенной, имеющей узкие характеристики направленности в вертикальной плоскости и широкие характеристиками направленности в горизонтальной плоскости, прием эхо-сигнала горизонтальной линейной антенной, имеющей узкие характеристики направленности в горизонтальной плоскости и широкие характеристики направленности в вертикальной плоскости, прием эхо-сигнала одновременно обеими антеннами, измерение дистанции и направления прихода эхо-сигнала, при совпадении измеренных дистанций определяется характеристика направленности в вертикальной плоскости, определяется угол места по отклонению положения этой характеристики от направления верхней горизонтальной характеристики и определяют глубину погружения относительно глубины погружения излучателя по формуле Ноб =Dверт Sin( ), где Dверт - измеренная дистанция до цели, - угол между характеристикой в вертикальной плоскости, в котором обнаружен эхо-сигнал от цели и направлением движения носителя, измеряют глубину погружения гидролокатора Нгл , а глубина погружения объекта определяется Н=Ноб гл. Технический результат: измерение глубины погружения объекта при любой глубине места подводным гидролокатором, в том числе при малой глубине места. 1 ил.

2516602
выдан:
опубликован: 20.05.2014
СПОСОБ ОПРЕДЕЛЕНИЯ ОШИБКИ ОЦЕНКИ ДИСТАНЦИИ ГИДРОЛОКАТОРОМ

Использование: в гидроакустике. Сущность: способ предназначен для определения ошибки оценки дистанции гидролокатором, установленным на подводном подвижном носителе относительно неподвижного отражателя. Для этого с помощью гидролокатора производят излучение зондирующих сигналов, определяют время излучения, определяют время приема эхосигнала, измеряют скорость звука, определяют разность между временем излучения и временем приема эхосигнала Т, вычисляют дистанцию, измеряют собственную скорость движения Vсоб, определяют угол q0 между положением неподвижного объекта и направлением движения носителя гидролокатора, определяют радиальную скорость объекта Vрад по двум следующим друг за другом посылкам зондирующего сигнала посылкам, а ошибку определения дистанции бД определяют по формуле:

бД=0,5((Vрад/cosq0 )-Vсоб)Т. Технический результат: обеспечение возможности определения ошибки оценки дистанции до неподвижного отражателя при движении носителя гидролокатора в подводном положении. 1 ил.

2516594
выдан:
опубликован: 20.05.2014
СФЕРИЧЕСКАЯ ГИДРОАКУСТИЧЕСКАЯ АНТЕННА

Использование: изобретение относится к гидроакустической технике. Сущность: антенна содержит тонкостенную полую сферическую оболочку, пьезоэлектрические преобразователи, опору для крепления антенны к носителю. Сферическая оболочка выполнена акустически прозрачной из пластика с равномерно расположенными отверстиями для заполнения оболочки водой при погружении антенны в воду, пьезоэлектрические преобразователи установлены на внутренней поверхности сферической оболочки. Преобразователи являются всенаправленными в рабочем диапазоне длин волн антенны и расположены двенадцатью группами таким образом, что центры групп находятся в вершинах вписанного в сферу икосаэдра на расстояниях, меньших либо равных 1,5 длинам волн максимальной частоты полосы принимаемого сигнала, каждая из двенадцати групп образована тремя преобразователями так, что акустический центр каждого преобразователя группы находится в вершине равностороннего треугольника с длиной стороны, равной половине длины волны максимальной частоты полосы принимаемого сигнала. Преобразователи расположены таким образом, что ось опоры антенны располагается перпендикулярно одной из граней икосаэдра и проходит через центр равностороннего треугольника, образуемого этой гранью. Технический результат: обеспечение защиты пьезоэлектрических преобразователей от внешнего механического воздействия, снижение массы антенны, возможно определение направления на источники гидроакустических сигналов с высокой точностью и разрешающей способностью при небольших размерах апертуры антенны. 2 ил.

2515133
выдан:
опубликован: 10.05.2014
СОЗДАНИЕ СТАНДАРТИЗОВАННЫХ ПРОТОКОЛОВ ДЛЯ АНАЛИЗА ДАННЫХ ТРЕХМЕРНОЙ ЭХОГРАММЫ

Изобретение относится к медицинским системам ультразвуковой диагностики с использованием данных трехмерной эхограммы. Система ультразвуковой диагностической визуализации содержит трехмерный ультразвуковой зонд, тракт прохождения ультразвукового сигнала, соединенный с ним дисплей и блок аналитической обработки изображений, выполненный с возможностью определения местоположения опорного изображения в наборе данных трехмерных изображений, манипулирования набором данных трехмерных изображений от проекции опорного изображения, записи манипуляций набором и воспроизведения записанных манипуляций от проекции опорного изображения. Во втором варианте выполнения системы дисплей выполнен с возможностью отображения изображений трех различных плоскостей визуализации набора данных трехмерных изображений, причем дисплей используют для отображения изображений для блока аналитической обработки изображений, который дополнительно включает возможность выполнения одной или нескольких манипуляций по изменению плоскости изображения, перемещению интересующего центра плоскости визуализации в другое анатомическое местоположение, вращению плоскости визуализации вокруг оси и перемещению плоскости визуализации на определенное расстояние. Способ записи протокола анализа для данных трехмерного ультразвукового изображения в системе ультразвуковой диагностической визуализации состоит в получении набора данных трехмерных изображений заданной анатомической структуры, идентификации опорного изображения, записи манипуляций проекцией изображения, обеспечении манипуляции проекциями изображений набора данных трехмерных изображений, начиная от проекции опорного изображения и заканчивая желаемой конечной проекцией изображения, и остановке записи. После чего получают второй набор данных трехмерных изображений анатомической структуры того же типа, идентифицируют опорное изображение второго набора данных трехмерных изображений, воспроизводят запись для осуществления манипуляции проекциями изображений второго набора данных трехмерных изображений и заканчивают желаемой конечной проекцией изображения. Использование изобретения позволяет предоставить стандартизованный протокол трехмерного анализа для направления аналитику любого уровня квалификации, возможность автоматизации для усовершенствования потока операций трехмерного анализа и снизить время анализа. 3 н. и 8 з.п. ф-лы, 7 ил.

2514112
выдан:
опубликован: 27.04.2014
СПОСОБ ОБЕСПЕЧЕНИЯ БЕЗАВАРИЙНОГО ДВИЖЕНИЯ НАДВОДНОГО ИЛИ ПОДВОДНОГО СУДНА ПРИ НАЛИЧИИ ПОДВОДНЫХ ИЛИ НАДВОДНЫХ ПОТЕНЦИАЛЬНО ОПАСНЫХ ОБЪЕКТОВ

Изобретение относится к области судостроения и судовождения. Способ обеспечения безаварийного движения надводного или подводного судна при наличии подводных и надводных потенциально опасных объектов включает постоянный прием спутниковых навигационных данных, данных от радиолокационной станции, автоматической идентификационной системы, определение местоположения судна, вычисление скорости судна, глубины под килем. Дополнительно включают операции, согласно которым получают трехмерное изображение подводной обстановки со всех сторон судна, спереди, с боков и сзади, для чего используют гидролокаторы в передней, задней, левой и правой областях, в случае обнаружения потенциально опасных объектов распознают их либо самим судоводителем, либо распознающим устройством и выбирают оптимальный способ предотвращения столкновения судна с потенциально опасным объектом и рассчитывают траекторию уклонения от потенциально опасного объекта. Повышается вероятность безаварийного движения надводного и подводного судна в различных потенциальных опасных аварийных ситуациях. 2 з.п. ф-лы, 2 ил.

2513198
выдан:
опубликован: 20.04.2014
УЛЬТРАЗВУКОВАЯ СИСТЕМА ПОМОЩИ ВОДИТЕЛЮ, СПОСОБ ЕЕ КОНФИГУРИРОВАНИЯ И СООТВЕТСТВУЮЩИЙ УЛЬТРАЗВУКОВОЙ ДАТЧИК

Группа изобретений относится к технике предотвращения столкновений транспортных средств, например, при парковке. Система помощи водителю транспортного средства включает в себя несколько соединенных шинной системой ультразвуковых датчиков и блок управления. Ультразвуковые датчики снабжены абсолютными идентификационными кодами, распознаваемыми извне, а также поддающимися электронному считыванию, при осуществлении которого регистрируют абсолютные идентификационные коды посредством внешнего считывающего устройства в заданной последовательности, считывают абсолютные идентификационные коды из внешнего считывающего устройства, передают абсолютные идентификационные коды в заданной последовательности в блок управления и посредством блока управления соотносят переданные абсолютные идентификационные коды с местами положения датчиков на транспортном средстве. Достигается повышение безопасности дорожного движения. 3 н. и 11 з.п. ф-лы, 3 ил.

2513097
выдан:
опубликован: 20.04.2014
ФАЗОВЫЙ ГИДРОЛОКАТОР БОКОВОГО ОБЗОРА

Изобретение относится к гидрографии, в частности к способам и техническим средствам определения глубин акватории фазовым гидролокатором бокового обзора, и может быть использовано для выполнения съемки рельефа дна акватории. Сущность: фазовый гидролокатор бокового обзора содержит излучатель, приемник, датчик измерения углов бортовой качки, блок управления и регистратор, соединенные с вычислителем, дополнительно содержит датчик измерения углов килевой качки, программный блок, анализатор спектра отраженного сигнала, монитор, вычислитель дополнительно соединен с выходами судового эхолота, судового приемника спутниковых навигационных систем, датчика измерения углов килевой качки, программного блока и анализатором спектра отраженного сигнала. Технический результат: повышение достоверности съемки. 2 з.п. ф-лы, 2 ил.

2510045
выдан:
опубликован: 20.03.2014
Наверх