способ поверхностного упрочнения металлических изделий

Классы МПК:C22C5/04 сплавы на основе металлов группы платины
C23C8/64 науглероживание
C22F1/14 благородных металлов или их сплавов 
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Красноярский завод цветных металлов имени В.Н. Гулидова" (ОАО "Красцветмет") (RU)
Приоритеты:
подача заявки:
2011-12-28
публикация патента:

Изобретение относится к области металлургии благородных металлов, в частности к производству различных изделий из платины и сплавов на основе платины, преимущественно к изготовлению ювелирных изделий, монет, медалей, значков. Изделия из платины или сплавов на основе платины подвергают химико-термической обработке в среде углеродсодержащего материала, при этом химико-термическую обработку ведут при температуре 1050°C-1400°C. Способ позволяет обеспечить поверхностное упрочнение ювелирных изделий из платины или сплавов на основе платины и повысить их износостойкость без снижения пробности и ухудшения внешнего вида. 2 пр., 4 табл.

Формула изобретения

Способ поверхностного упрочнения изделий из платины или сплавов на основе платины, отличающийся тем, что поверхностное упрочнение осуществляют химико-термической обработкой изделий в среде углеродсодержащего материала при температуре 1050-1400°С.

Описание изобретения к патенту

Изобретение относится к области металлургии благородных металлов, в частности к производству различных изделий из платины и сплавов на основе платины, преимущественно к изготовлению ювелирных изделий, монет, медалей, значков.

Платина и сплавы на основе платины широко используются в ювелирном производстве благодаря высоким потребительским качествам. Они имеют красивый внешний вид, коррозионную устойчивость к воздействию внешних факторов, прекрасно сочетаются с драгоценными камнями, хорошо обрабатываются.

Наибольшим спросом в России и на мировом рынке пользуются высокопробные ювелирные платиновые изделия, в частности изделия 990 и 950 проб.

Основным общеизвестным недостатком платины и ее высокопробных сплавов, а также высокопробных сплавов золота, при их использовании для изготовления ювелирных изделий, является низкая износостойкость готовых изделий вследствие их недостаточной прочности и твердости. Использование различных добавок в составе ювелирных сплавов позволяет в некоторой степени улучшить механические свойства изделий, однако для высокопробных сплавов платины и золота проблема увеличения прочности и твердости изделий остается актуальной.

Известен способ повышения твердости и прочности ювелирных изделий, изготовленных из сплавов на основе золота [см. Э.Бреполь. Теория и практика ювелирного дела. Изд. 3-е. Пер. с нем. Л., Машиностроение 1977. - 384 с. (стр.136-142)]. Этот способ связан с созданием условий для распада пересыщенных твердых растворов, когда в процессе термообработки из закаленного сплава (пересыщенного твердого раствора) выделяется в форме дисперсной фазы компонент, ранее находившийся в растворенном состоянии. Так как дисперсионные частички фазы, выделяемой из закаленного твердого раствора, вызывают повышение прочности и твердости металлических изделий, то такой процесс называют «дисперсионным твердением» или «искусственным старением». Данный способ может быть принят в качестве аналога и широко применяется для упрочнения ювелирных изделий из сплавов на основе золота, что позволяет использовать в изделиях меньшую толщину драгоценного металла и обеспечивает его экономию. Термообработку ювелирных изделий из сплавов золота ведут при температурах от 600°С до 800°С.

Недостатком способа-аналога является его ограниченная применимость - он не может быть использован для изделий из платины и высокопробных сплавов на ее основе, как не склонных к образованию пересыщенных растворов.

Повышение износостойкости металлических изделий является весьма актуальной проблемой во многих областях промышленности и зачастую обеспечивается путем упрочнения поверхностных слоев различных деталей. Известны различные методы упрочнения поверхностного слоя металлических изделий: механические, физические, гальванические, термомеханические, термические, химико-термические [Бернштейн М.Л., Займовский В.А., Кануткина Л.М. Термомеханическая обработка стали. - М., Металлургия, 1983. - 479 с.].

Из уровня техники известен способ поверхностного упрочнения металлических изделий, заключающийся в их химико-термической обработке в среде углеродсодержащего материала - т.н. процесс «цементации» поверхности. Химико-термическая обработка заключается в сочетании термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя металла.

Процесс химико-термической обработки (цементации поверхности) заключается в высокотемпературном насыщении поверхностного слоя углеродом и используется для поверхностного упрочнения стальных и чугунных изделий. Цементация применяется в основном для низкоуглеродистых сталей типа Ст2, Ст3, 08, 10, 15, 20, 15Х, 20Х, 20ХНМ и др., однако в ряде случаев может быть использована при обработке шарикоподшипников - стали ШХ15, 7X3 и коррозионно-стойких сталей типа 10X13, 20X13 и т.д. Процесс цементации осуществляется в интервале температур 930-950°С. Структура поверхностного слоя цементованного изделия представляет собой структуру заэвтектоидной стали (перлит и цементит вторичный), поэтому для придания стали окончательных эксплуатационных свойств после процесса цементации необходимо выполнить режим термической обработки, состоящий в закалке и низком отпуске. Закалка обычно проводится с температуры цементации непосредственно после завершения процесса химико-термической обработки. После закалки следует отпуск при температурах 160-180°С. Цементация производится в углеродсодержащих твердых, жидких или газообразных средах, называемых карбюризаторами.

При твердофазной химико-термической обработке металлические изделия упаковывают в цементационные емкости, которые загружают в печь, нагретую до температур 600-700°С, и нагревают до температуры цементации - 930-950°С. По окончании процесса цементации емкости вынимают из печи и охлаждение изделий ведут внутри емкостей на воздухе [Металлы и сплавы. Справочник. - СПб.: АНО НПО «Профессионал», АНО НПО «Мир и Семья», 2003. - 1090 с. Раздел 9. - Упрочнение поверхности стальных деталей. Автор - Ермаков Б.С. стр.470-472].

Данный способ по своей физико-технической сущности наиболее близок к заявляемому способу и может быть принят за прототип.

Способ-прототип относительно прост, может быть реализован на стандартном печном оборудовании и широко применяется как в условиях мелкосерийного производства, так и на крупных предприятиях для поверхностного упрочнения стальных и чугунных изделий.

Недостаток способа-прототипа состоит в том, что для поверхностного упрочнения изделий из цветных металлов, в частности изделий из платины и сплавов на основе платины, данный способ не может быть использован, так как при температурах 930-950°С взаимодействия платины с углеродом практически не наблюдается и поверхностного упрочнения не происходит.

Задачей, на решение которой направлено предлагаемое техническое решение, является разработка способа, позволяющего обеспечить поверхностное упрочнение ювелирных изделий из платины и (или) сплавов на основе платины и повысить тем самым их износостойкость без снижения пробности и ухудшения внешнего вида.

Технический результат достигается тем, что химико-термической обработке в среде углеродсодержащего материала подвергают ювелирные изделия из платины и (или) сплавов на основе платины, а химико-термическую обработку ведут при температуре 1050°С-1400°С.

Сущность предлагаемого способа заключается в том, что термообработка изделий из платины и (или) сплавов на основе платины, находящихся в среде углеродсодержащего материала, например в среде порошка графита, вызывает диффузионное растворение атомов углерода в поверхностном слое изделия и образование устойчивого соединения - карбида платины Pt7C, обладающего повышенной твердостью. В результате такой химико-термической обработки изделий из платины и ее сплавов становится возможным сформировать на поверхности изделий тонкий слой, повышающий их поверхностную твердость и износостойкость. Заявляемый температурный режим термообработки ювелирных изделий из платины и сплавов на ее основе был подобран экспериментальным путем и является оптимальным. Температура ниже 1050°С является нежелательной, так как диффузия углерода и формирование упрочняющего слоя на платиновых изделиях при таких условиях протекают чрезвычайно медленно и требуют весьма длительной обработки. Вместе с тем превышение температуры термообработки выше 1400°С также нецелесообразно, так как излишне активно протекающая диффузия углерода в этом случае приводит к его глубокому проникновению в объем изделия, что приводит к образованию «толстых» поверхностных пленок, повышает хрупкость ювелирных изделий и чревато ухудшением их внешнего вида, а также снижением пробности.

Таким образом, заявляемый способ позволяет обеспечить упрочнение поверхностного слоя ювелирных изделий из платины и сплавов на основе платины без ухудшения внешнего вида и снижения пробности.

Примеры использования

Пример 1

Для упрочнения поверхностного слоя взяли два образца-полуфабриката в виде готовых ювелирных колец из платинового сплава PtCu-950. Одно из этих колец взято до операции финишной полировки, второе - после полировки, перед выходом в готовую продукцию. У каждого кольца перед химико-термической обработкой определили по методу Виккерса исходную микротвердость поверхности, в зависимости от нагрузки вдавливания алмазного индентора (0,5 и 0,05 Н), что позволяет оценить микротвердость на различных глубинах от поверхности (табл.1).

Таблица 1
Микротвердость неполированного образца, МПа Микротвердость полированного образца, МПа
HV0,5 2086HV0,5 1940
HV0,05 2123 HV0,05 2091

Оба образца были подвергнуты химико-термической обработке следующим образом.

В керамический тигель объемом 100 мл загрузили измельченный и просеянный до крупности (-0,25 мм) угольный порошок. В угольный порошок на глубину 15-20 мм поместили оба образца - ювелирные кольца из сплава на основе платины (Pt - 95%, Cu - остальное). Угольный порошок полностью покрывал оба кольца.

Муфельную печь «Nabertherm» разогрели до температуры 1100°С и загрузили в печь тигель с угольным порошком и платиновыми кольцами. Продолжительность выдержки тигля в рабочей зоне печи при температуре 1100°С составила 2 ч. Затем тигель извлекли из рабочей зоны печи и поставили остывать на воздухе. После остывания тигля до температуры 30-40°С из угольного порошка были извлечены кольца. Кольца очистили от угольной пыли и передали для определения их микроструктуры, микротвердости и цветовых характеристик.

Исследование микроструктуры в отожженных кольцах-полуфабрикатах показало наличие в объеме образцов равноосных, гомогенных зерен с ровными границами. В поверхностном слое у обоих образцов произошло формирование упрочненной области толщиной 10-13 мкм.

Отражательная способность и цветовые характеристики исследуемых образцов до и после их выдержки при высокой температуре в среде угольного порошка практически не изменились и внешний вид не ухудшился.

Микротвердость поверхности полуфабрикатов после химико-термической обработки представлена в таблице 2.

Таблица 2
Микротвердость неполированного образца, МПа Микротвердость полированного образца, МПа
HV0,5 2873HV0,5 3140
HV0,05 3568 HV0,05 3098

Таким образом, установлено, что в результате химико-термической обработки полуфабрикатов (ювелирных колец) из сплава PtCu-950 в них произошло поверхностное упрочнение:

- микротвердость неполированного кольца увеличилась на 800-1400 МПа и составила от 2873 до 3568 МПа;

- микротвердость полированного кольца увеличилась на 1000-1200 МПа и составила от 3098 до 3140 МПа.

Очевидно, химико-термическую обработку ювелирных изделий с целью их поверхностного упрочнения целесообразней проводить до финишной полировки. Последующая полировка позволит добиться как упрочнения поверхности, так и необходимого внешнего блеска образца.

Пример 2

Взяли полуфабрикат - диск из чистой платины, изготовленный штамповкой из листового проката литой заготовки. Диаметр диска 30 мм, толщина - 3 мм.

Определили отражательную способность и цветность образца с помощью спектроколориметра SP60. Измерили микротвердость поверхностного слоя образца с помощью микротвердомера МНТ-10 на базе оптического микроскопа Carl Zeiss. Результаты представлены в табл.3

Таблица 3
Отражательные, цветовые характеристики и микротвердость образца чистой платины после литья и пластической деформации, при усилии на инденторе 0,5 Н и 0,05 Н соответственно
способ поверхностного упрочнения металлических изделий, патент № 2482203 способ поверхностного упрочнения металлических изделий, патент № 2482203 Pt
Цветность L (к-т отраж.) 87,00
±а (+красный +0,72
-зеленый)способ поверхностного упрочнения металлических изделий, патент № 2482203
±b (+желтый +5,97
-синий)способ поверхностного упрочнения металлических изделий, патент № 2482203
Микротвердость, HV (0,5/0,05 Н), МПа способ поверхностного упрочнения металлических изделий, патент № 2482203 832//1123

В керамический тигель загрузили порошок графита и поместили в среду последнего платиновый диск. Муфельную печь «Nabertherm» разогрели до температуры 1200°С и поместили в нее тигель с графитовым порошком и платиновым диском.

Продолжительность выдержки тигля в рабочей зоне печи при температуре 1200°С составила 1 ч 30 мин. После этого тигель выгрузили из рабочей зоны печи, охладили до комнатной температуры и извлекли платиновый диск. Очистили поверхность диска от графитовой пыли, протерли марлей, смоченной в спирте, и провели повторно замеры цветности и микротвердости (табл.4).

Таблица 4
Результаты повторных измерений цветовых характеристик и микротвердости образца из платины после его химико-термической обработки с целью поверхностного упрочнения
1200°С + графит

1 ч 30 мин
способ поверхностного упрочнения металлических изделий, патент № 2482203 Pt
Цветность L (к-т отраж.) 86,90
±а (+красный +0,62
-зеленый)способ поверхностного упрочнения металлических изделий, патент № 2482203
±b (+желтый +3,97
-синий)способ поверхностного упрочнения металлических изделий, патент № 2482203
Микротвердость, HV (0,5/0,05 Н), МПа способ поверхностного упрочнения металлических изделий, патент № 2482203 1118//1708

После изотермической выдержки образца под слоем графита его отражательная способность и цветовые характеристики изменились незначительно, в то время как микротвердость поверхностного слоя значительно возросла, обеспечив тем самым поверхностное упрочнение платинового диска.

Класс C22C5/04 сплавы на основе металлов группы платины

ювелирный сплав на основе платины -  патент 2528293 (10.09.2014)
ювелирный сплав платины -  патент 2528292 (10.09.2014)
сплав -  патент 2514361 (27.04.2014)
сплав для изготовления монет -  патент 2502815 (27.12.2013)
сплав для изготовления монет -  патент 2499067 (20.11.2013)
сплав на основе палладия для изготовления зубных протезов -  патент 2481095 (10.05.2013)
литейный ювелирный сплав белого цвета на основе палладия -  патент 2479656 (20.04.2013)
сплав на основе палладия 500 пробы -  патент 2479655 (20.04.2013)
припой для пайки ювелирных изделий из сплава палладия 850 пробы -  патент 2447170 (10.04.2012)
платиновый сплав для катализаторных сеток -  патент 2439182 (10.01.2012)

Класс C23C8/64 науглероживание

Класс C22F1/14 благородных металлов или их сплавов 

Наверх