биодатчик для определения биологически активных веществ, взаимодействующих с двухцепочечными молекулами нуклеиновых кислот
Классы МПК: | C07H21/00 Соединения, содержащие два или более мононуклеотидных остатка, имеющих отдельные фосфатные или полифосфатные группы, связанные сахаридными радикалами нуклеозидных групп, например нуклеиновые кислоты G01N21/00 Исследование или анализ материалов с помощью оптических средств, те с использованием инфракрасных, видимых или ультрафиолетовых лучей G01N21/29 с помощью визуальных средств обнаружения C08K5/01 углеводороды C08K5/04 кислородсодержащие соединения |
Автор(ы): | Скуридин С.Г., Токарева Л.Г., Евдокимов Ю.М. |
Патентообладатель(и): | Институт молекулярной биологии им.В.А.Энгельгардта РАН, Научно-производственное объединение "Химволокно" |
Приоритеты: |
подача заявки:
1991-06-26 публикация патента:
30.07.1994 |
Использование: медицинская и клиническая биохимия, фармацевтическая промышленность. Сущность изобретения: в водно-солевом растворе, содержащем проксанол, формируют жидкокристаллическую дисперсию ДНК холестерического типа, затем к смеси добавляют раствор мономеров акриламида и вызывают их полимеризацию, которая сопровождается образованием синтетического полимерного матрикса во всем объеме раствора. Пространственное расположение молекул проксанола, сшитых полиакриламидом, обеспечивает формирование псевдокапсул с заключенной внутри жидкокристаллической дисперсией ДНК холестерического типа. Характерной особенностью нового биодатчика является высокая прозрачность полимерного матрикса. 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
БИОДАТЧИК ДЛЯ ОПРЕДЕЛЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ, ВЗАИМОДЕЙСТВУЮЩИХ С ДВУХЦЕПОЧЕЧНЫМИ МОЛЕКУЛАМИ НУКЛЕИНОВЫХ КИСЛОТ, представляющий собой жидкокристаллическую дисперсию холестерического типа линейных двухцепочечных молекул нуклеиновых кислот, псевдокапсулированную в состав синтетического полимерного матрикса, отличающийся тем, что синтетический полимерный матрикс формируют на основе блоксополимера этилена и окиси пропилена.Описание изобретения к патенту
Изобретение относится к медицинской технике, биотехнологии и фармацевтической промышленности. Изобретение может быть использовано в медицинской и клинической биохимии, а также молекулярной фармакологии при исследовании биологически активных веществ и препаратов, "мишенью" которых является генетический материал клеток. Известны две группы методов, используемых при скрининге биологических активных веществ (БАВ) . Первую группу составляют биологические методы , заключающиеся в том, что на хорошо изученных генетических системах бактерий и бактериофагов проверяют действие веществ, вызывающих прямые и обратные мутации. Недостаток этой группы методов состоит в том, что на пути проникновения вещества в клетку (от клеточной мембраны до генетического материала) происходит модификация структуры вещества, снижающая точность установления корреляции между структурой вещества и его биологической активностью. Еще одним недостатком этой группы методов является длительность проведения экспериментов (от суток до недель). Вторую группу составляют физико-химические методы. Один из них - оптический . В этом методе, в его общепринятой постановке анализируются изменения спектральных свойств линейных, двухцепочечных молекул нуклеиновых кислот, вызываемые действием БАВ в растворе. Относительно невысокая чувствительность такого варианта оптического метода, учитывающего изменение электронных свойств азотистых оснований нуклеиновых кислот, ограничивает его применение. Еще одним недостатком физико-химических методов в их, традиционной постановке является то обстоятельство, что молекулы нуклеиновых кислот в составе биологических объектов (вирусах и хромосомах) могут находиться в особом состоянии, свойства которого отличаются от свойств линейных выделенных из ядер клеток или вирусных частиц молекул нуклеиновых кислот. Поэтому данные, полученные при изучении взаимодействия БАВ с линейными молекулами нуклеиновых кислот, зачастую нельзя переносить на свойства молекул нуклеиновых кислот в клетке. Отмеченные выше недостатки методом, используемых при скрининге БАВ, в настоящее время достаточно успешно устраняются при помощи биодатчиков, создаваемых на основе лиотропных жидкокристаллических кислот холестерического типа, псевдокапсулированных в состав синтетического полимерного матрикса. Известен жидкокристаллический биодатчик данного типа (биодатчик 1-го поколения) , принятый за прототип, представляющий собой синтетический полимерный матрикс, содержащий в своем составе псевдокапсулированные жидкие кристаллы нуклеиновых кислот холестерического типа. Синтетический полимерный матрикс, созданный на основе одного из полигликолей и применяемый в биодатчиках 1-го поколения, проницаем для БАВ (например, антибиотиков и т.д.) и оптически изотропен. Однако этот матрикс является полупрозрачным. Это обстоятельство влияет на точность результатов измерений аномальной оптической активности холестерических жидких кристаллов нуклеиновых кислот. Целью изобретения является повышение точности и воспроизводимости результатов измерений аномальной оптической активности холестерических жидких кристаллов нуклеиновых кислот при скрининге БАВ. Это достигается в результате использования в качестве одного из компонентов синтетического полимерного матрикса водорастворимого полимера "проксанола", представляющего собой блоксополимер окиси этилена и окиси пропилена. Сначала в водно-солевом растворе, содержащем проксанол, формируют жидкокристаллическую дисперсию ДНК холестерического типа.Затем к полученной смеси добавляют раствор мономеров акриламида и вызывают их полимеризацию. Полимеризация мономеров акриламида, приводящая к образованию полиакриламида, сопровождается формированием синтетического полимерного матрикса во всем объеме раствора. Отличительная особенность подобранной реакции состоит в том, что при достижении определенной степени полимеризации мономеров акриламида в состав полимерного матрикса включаются молекулы проксанола. При этом чередование остатков окиси этилена и окиси пропилена обеспечивает высокую прозрачность полимерного матрикса. Пространственное расположение молекул проксанола, сшитых полиакриламидом, вокруг частиц жидкокристаллической дисперсии ДНК создает "псевдокапсулу". Формирование "псевдокапсул" во всем объеме раствора обеспечивает консервацию жидкокристаллической дисперсии ДНК холестерического типа. Важная особенность предлагаемого синтетического полимерного матрикса состоит в том, что подобранные условия создания полимерного матрикса обеспечивают сохранение аномальной оптической активности холестерической жидкокристаллической дисперсии ДНК, которая, как показано ранее , выступает в качестве критерия, позволяющего детектировать взаимодействие различных БАВ с ДНК. Еще одной важной особенностью синтетического полимерного матрикса, формируемого на основе проксанола, является его прозрачность, что в сочетании с доступностью препаратов проксанола увеличивает точность и воспроизводимость результатов измерения аномальной оптической активности. Принцип действия предлагаемого датчика не отличается от принципа действия датчика, предложенного ранее , и состоит в том, что молекулы БАВ, диффундируя в синтетический полимерный матрикс, взаимодействуют с молекулами ДНК, образующими холестерические жидкие кристаллы, "законсервированные" в синтетическом полимерном матриксе. Изменения в спектрах кругового дихроизма (КД), регистрируемые при взаимодействии БАВ с молекулами ДНК, позволяют детектировать наличие БАВ в исследуемом растворе, а характер этих изменений - определить типа взаимодействия БАВ с ДНК, т.е. эти изменения позволяют "ранжировать" БАВ по эффективности их взаимодействия с ДНК. П р и м е р 1. Приготовление на основе проксанола синтетического полимерного матрикса, не содержащего жидких кристаллов нуклеиновых кислот. 1.1 Навески NаН2РО4
















Класс C07H21/00 Соединения, содержащие два или более мононуклеотидных остатка, имеющих отдельные фосфатные или полифосфатные группы, связанные сахаридными радикалами нуклеозидных групп, например нуклеиновые кислоты
Класс G01N21/00 Исследование или анализ материалов с помощью оптических средств, те с использованием инфракрасных, видимых или ультрафиолетовых лучей
Класс G01N21/29 с помощью визуальных средств обнаружения
Класс C08K5/04 кислородсодержащие соединения