Элементы конструкции электродов, устройств для магнитного управления, экранов, устройств для их крепления или размещения, общие для двух и более основных типов электронных и газоразрядных приборов – H01J 1/00

МПКРаздел HH01H01JH01J 1/00
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01J Электрические газоразрядные и вакуумные электронные приборы и газоразрядные осветительные лампы
H01J 1/00 Элементы конструкции электродов, устройств для магнитного управления, экранов, устройств для их крепления или размещения, общие для двух и более основных типов электронных и газоразрядных приборов

H01J 1/02 .основные электроды 
H01J 1/04 ..жидкие электроды, например жидкий катод 
H01J 1/05 ...отличающиеся по материалу 
H01J 1/06 ...сосуды для жидких электродов; их устройство и крепление 
H01J 1/08 ...управление положением и перемещением катодного пятна по поверхности жидкого катода 
H01J 1/10 ...охлаждение, нагрев, циркуляция, фильтрация или регулирование уровня жидкости в жидком электроде 
H01J 1/12 ..катоды с ртутью или жидким щелочным металлом, осаждающимся на поверхность катода в процессе работы прибора 
H01J 1/13 ..твердые термокатоды 
H01J 1/14 ...отличающиеся по материалу 
H01J 1/142 ....с оксидами щелочноземельных металлов или с такими оксидами, которые используются в соединении с восстанавливающими агентами, в качестве эмиссионного материала
H01J 1/144 ....с другими оксидами металлов в качестве эмиссионного материала
H01J 1/146 ....с металлами или сплавами в качестве эмиссионного материала
H01J 1/148 ....со смесями, обладающими металлической проводимостью, например борид лантана, в качестве эмиссионного материала
H01J 1/15 ...катоды прямого канала 
H01J 1/16 ....отличающиеся по форме 
H01J 1/18 ....держатели; устройства для демпфирования колебаний 
H01J 1/20 ...катоды косвенного накала; катоды, накаливаемые с помощью бомбардировки электронами или ионами 
H01J 1/22 ....подогреватели
нити для ламп накаливания  H 01K 1/02
H01J 1/24 ....изолирующие слои или прокладки, расположенные между подогревателем и эмиттирующим веществом 
H01J 1/26 ....подложки для эмиттирующего вещества 
H01J 1/28 ....катоды с постоянной активацией, L-катоды 
H01J 1/30 ..холодные катоды 
H01J 1/304 ...автоэлектронные катоды
H01J 1/308 ...полупроводниковые катоды, например катоды с PN-переходными слоями
H01J 1/312 ...с электрическим полем, расположенным перпендикулярно поверхности, например турельные катоды типа металл-изолятор-металл
H01J 1/316 ...с электрическим полем, расположенным параллельно поверхности, например тонкопленочные катоды
H01J 1/32 ..электроды с вторичной электронной эмиссией
 1/35 имеет преимущество; люминесцентные экраны  1/62; экраны с накоплением зарядов вообще  1/78; экраны кинескопов с накоплением зарядов с использованием вторичной эмиссии  29/41; диноды для трубок с вторичной эмиссией  43/10; детекторы вторичной эмиссии для измерений ядерных или рентгеновских излучений  G 01T 1/28
H01J 1/34 ..фотоэлектрические катоды-фотокатоды
 1/35 имеет преимущество; фотоэлектрические экраны  1/78
H01J 1/35 ..электроды, способные работать как в режиме вторичной электронной эмиссии, так и в режиме фотоэмиссии 
H01J 1/36 ..твердые аноды; твердые вспомогательные аноды для поддержания разряда 
H01J 1/38 ...отличающиеся материалом 
H01J 1/40 ...составляющие часть колбы прибора или лампы 
H01J 1/42 ...охлаждение анодов
охлаждение вращающихся анодов  1/44
H01J 1/44 ...вращающиеся аноды; устройства для приведения анодов во вращение; охлаждение вращающихся анодов 
H01J 1/46 .управляющие электроды, например сетка; вспомогательные электроды
для устройств зажигания  7/30; вспомогательные аноды для поддержания разряда или потока электронов  1/36
H01J 1/48 ..отличающиеся материалом 
H01J 1/50 .магнитные устройства для управления разрядом 
H01J 1/52 .защитные экраны
экраны, действующие как управляющие электроды  1/46
H01J 1/53 .электроды, непосредственно соединенные с экраном, на котором или с помощью которого создается, воспринимается, преобразуется или накапливается изображение 
H01J 1/54 .экраны, на которых или с помощью которых создается, воспринимается, преобразуется или накапливается изображение; люминесцентные покрытия на баллонах 
H01J 1/56 ..действующие как световые модуляторы с помощью управления заслонкой, например в эйдофорах 
H01J 1/58 ..действующие путем изменения окраски, например галогенсодержащие экраны 
H01J 1/60 ..накаливаемые экраны 
H01J 1/62 ..люминесцентные экраны; выбор материалов для люминесцентных покрытий на баллонах 
H01J 1/63 ...отличающиеся по используемым люминесцентным материалам
люминесцентные материалы  C 09K 11/00
H01J 1/64 ...характеризующиеся связующими агентами или клеями для крепления люминесцентного материала к подложке 
H01J 1/66 ...подложки для люминесцентного материала
баллоны  5/02
H01J 1/68 ...с наложенными друг на друга люминесцентными слоями 
H01J 1/70 ...с защитными, токопроводящими или отражающими слоями 
H01J 1/72 ...с дискретно расположенным люминесцентным материалом, например точечным или полосковым 
H01J 1/74 ....со смежными точками или полосками из разных люминесцентных материалов 
H01J 1/76 ...снабженные постоянными знаками или метками 
H01J 1/78 ..фотоэлектрические экраны; экраны с накоплением зарядов 
H01J 1/88 .монтаж, крепление, размещение или изоляция электродов или электродных узлов 
H01J 1/90 ..изоляция между электродами и(или) держателями в вакууме
вводные проводники  5/46
H01J 1/92 ..держатели для электродных узлов в целом 
H01J 1/94 ..держатели для отдельных электродов
для катодов прямого накала  1/15
H01J 1/96 ..прокладки или распорные элементы, доходящие до стенки колбы 
H01J 1/98 ...без жесткой связи между распорным элементом и колбой 

Патенты в данной категории

СПОСОБ ИЗГОТОВЛЕНИЯ ЭМИТТЕРА ЭЛЕКТРОНОВ ВАКУУМНОГО ИЛИ ГАЗОНАПОЛНЕННОГО ДИОДА

Изобретение относится к технологии изготовления эмиттеров электронов с пониженной работой выхода, может использоваться в диоде для выпрямителей переменного тока в постоянный при высоких температурах окружающей среды. Технический результат - упрощение изготовления эмиттера с сохранением основных выходных параметров устройства больших плотностей электронного тока. Способ предусматривает изготовление эмиттера электронов из тугоплавкого материала с добавками цезия или бария, в качестве материала эмиттера используют монокристаллические W или Мо или Nb или Та, а барий или цезий имплантируют в материал эмиттера путем бомбардировки пучком ионов, ускоренных до энергии 30-60 кэВ до достижения доз имплантации 1016 ион/см2. Дополнительно осуществляют сканирование ионного пучка по поверхности эмиттера в горизонтальном и вертикальном направлениях. 1 з.п. ф-лы, 1 табл., 1 ил.

2526541
выдан:
опубликован: 27.08.2014
СПОСОБ ИЗГОТОВЛЕНИЯ АВТОЭМИССИОННОГО КАТОДА

Изобретение относится к лазерной технике, а именно к способам лазерной обработки материалов при изготовлении автоэмиссионных катодов из стеклоуглерода, которые могут быть использованы в области приборостроения электронной техники, а именно в электровакуумных приборах с большой плотностью электронных потоков и микросекундным временем готовности. Для создания автоэмиссионного катода в качестве углеродного материала используют стеклоуглерод. Формирование эмиттеров на поверхности катода производят фрезеровкой сфокусированным лазерным излучением и последующей лазерной очисткой поверхности катодной структуры. Нанесение эмитирующей структуры на поверхности эмиттеров катода производят лазерной микрогравировкой с образованием поля микроострий пирамидальной формы с последующей вырезкой основания катода сфокусированным лазерным излучением и лазерной очисткой эмитирующих структур. Технический результат - повышение технических характеристик автоэмиссионного катода. 2 ил.

2526240
выдан:
опубликован: 20.08.2014
СПОСОБ ИЗГОТОВЛЕНИЯ МДМ-КАТОДА

Изобретение относится к области электронной техники. Способ изготовления МДМ-катода заключается в нанесении на подложку нижнего электрода, диэлектрика, верхнего электрода и формовку структуры. На нижнем электроде создается регулярная наноострийная структура в виде столбиков с плотностью 5·10 см-2 путем электрохимического осаждения металла через шаблон из полимерной пленки со сквозными порами. Технический результат - повышение плотности тока эмиссии и ее равномерности по поверхности МДМ-катода. 2 ил.

2525865
выдан:
опубликован: 20.08.2014
ТРЕХМЕРНО-СТРУКТУРИРОВАННАЯ ПОЛУПРОВОДНИКОВАЯ ПОДЛОЖКА ДЛЯ АВТОЭМИССИОННОГО КАТОДА, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И АВТОЭМИССИОННЫЙ КАТОД

Заявленное изобретение относится к области электротехники, а именно, к способу получения трехмерно-структурированной полупроводниковой подложки для автоэмиссионного катода, и может быть использовано в различных электронных приборах: СВЧ, рентгеновских трубках, источниках света, компенсаторах заряда ионных пучков и т.п. Создание трехмерно-структурированной полупроводниковой подложки, на которую наносят эмитирующую пленку автоэмиссионных катодов в виде микроострийной квазирегулярной ячеисто-пичковой структуры с аспектным отношением не менее 2 (отношение высоты острий к их высоте), позволяет повысить эмиссионную характеристику катодов, что является техническим результатом заявленного изобретения. Полупроводниковую подложку для формирования на ней требуемой микроострийной структуры подвергают фотоэлектрохимическому травлению в водном или безводном электролите, меняя режимы травления и интенсивность подсветки. Предложена также структурированная полупроводниковая подложка для автоэмиссионного катода из кристаллического кремния р-типа с проводимостью от 1 до 8 Ом*см и сам автоэмиссионный катод с такой подложкой, обладающий повышенными эмиссионными характеристиками. 3 н. и 3 з.п. ф-лы, 5 ил.

2524353
выдан:
опубликован: 27.07.2014
АВТОЭМИССИОННЫЙ КАТОД

Изобретение относится к устройствам вакуумной электроники, в частности к источникам для получения электронного потока - автоэмиттерам (холодным эмиттерам) электронов, материалам и способам их изготовления. Подобные катоды могут использоваться в качестве источников электронов в различных электронных приборах - электронных микроскопах, рентгеновских трубках, усилительных и генераторных приборах СВЧ электроники, источниках света и т.п. Технический результат изобретения - получение стабильного автоэмиссионного катода с высокой удельной проводимостью, плотностью автоэмиссионного тока до 20 мА/см2. Результат достигнут использованием в автоэмиссионном катоде объемного композитного материала, содержащего частицы металла, окруженные наноструктурированным углеродным материалом (углеродные или углерод-азотные нанотрубки, углеродные нановолокна, фуллерены и им подобные материалы). При этом металл обеспечивает низкое удельное сопротивление, высокую теплопроводность и механическую прочность, а наноуглеродный материал - высокие эмиссионные свойства катода. Для повышения эффективности автоэлектронной эмиссии при изготовлении катода применены: дополнительная механическая обработка с удалением поверхностного слоя катода и последующей шлифовкой, химическое и плазменное травление рабочей поверхности. Полученный катод обеспечивает плотность автоэмиссионного тока на уровне 10-20 мА/см2 с высокой стабильностью и однородностью. 4 ил.

2504858
выдан:
опубликован: 20.01.2014
ГЕТЕРОПЕРЕХОДНАЯ СТРУКТУРА

Изобретение может найти применение в качестве приборной структуры для твердотельных автоэмиссионных диодов и эмитирующих электроны активных элементов функциональных узлов как в твердотельной электронике, так и в вакуумной эмиссионной электронике, в том числе в силовой СВЧ электронике. Гетеропереходная структура согласно изобретению состоит из полупроводниковых слоев n- и p-типа проводимости, расположенных последовательно на подложке n-типа, гомогенной прилежащему к ней полупроводниковому слою n-типа и имеющей омический контакт к тыльной стороне, при этом на поверхности n-слоя со стороны n-p гетерограницы расположен массив из наноструктурированных объектов, p-слой выполнен в виде алмазной пленки, толщина которой не превышает диффузионную длину электронов, а концентрация акцепторов в нем находится в диапазоне 1020-1024 м -3. Изобретение обеспечивает возможность значительного увеличения рабочих токов автокатода, либо автоэмиссионных диодов, повышения стойкости устройств к деградации и увеличения их рабочего ресурса. 5 з.п. ф-лы, 1 пр., 6 ил.

2497222
выдан:
опубликован: 27.10.2013
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЦЫ МНОГООСТРИЙНОГО АВТОЭМИССИОННОГО КАТОДА НА МОНОКРИСТАЛЛИЧЕСКОМ КРЕМНИИ

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии матрицы многоострийных углеродных эмиттеров на пластинах монокристаллического кремния. Изготовление матрицы многоострийного автоэмиссионного катода осуществляют на пластинах монокристаллического кремния в плазме микроволнового газового разряда осаждением из паров углеродосодержащих веществ, например этанола, с использованием явлений самоорганизации и структурирования субмонослойных углеродных покрытий в наноостровковые образования и последующего высокотемпературного отжига. Для увеличения коэффициента усиления электрического поля и уменьшения, тем самым, рабочих напряжений при получении повышенных значений токов автоэмиссии осуществляют формирование эмиссионных центров в виде интегральных столбчатых наноструктур высотой до нескольких десятков нанометров, которые получают высокоанизотропным травлением кремниевых пластин с использованием полученных углеродных островковых нанообразований в качестве масочного покрытия. Технический результат - повышение стабильности и эффективности эмиссии.

2484548
выдан:
опубликован: 10.06.2013
ПОЛУЧЕНИЕ ОДНОРОДНОСТИ ГАЗОВОГО РАЗРЯДА

Изобретение относится к электронной технике, в частности к технике газоразрядных приборов. Заявленное изобретение характеризуется использованием шины, имеющей малые индуктивность и электрическое сопротивление и расположенной вблизи объема с газовым разрядом, в качестве источника магнитного поля. Магнитное поле ограничивает движение электрических зарядов поперек электрического поля в разряде, что приводит к однородности тока и ионизированного газа в разряде. Техническим результатом является получение однородного газового разряда, в частности, в молекулярных газах, увеличение тока, проходящего через источник магнитного поля, обеспечение доступности объема разряда во время его горения. 1 ил., 1 пр.

2474910
выдан:
опубликован: 10.02.2013
СПОСОБ ПОВЫШЕНИЯ ДЕГРАДАЦИОННОЙ СТОЙКОСТИ СИЛЬНОТОЧНЫХ МНОГООСТРИЙНЫХ АВТОЭМИССИОННЫХ КАТОДОВ

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Синтез материала многоострийного автоэмиссионного катода осуществляют в плазме микроволнового газового разряда из паров углеродосодержащих веществ, например, этанола в диапазоне параметров процесса, в котором реализуется переход от осаждения графитовых к осаждению алмазных пленок. Образующийся композиционный материал представляет собой графитовую матрицу с включениями наноалмазных кристаллитов. Матрица многоострийного автоэмиссионного катода изготавливается по технологии, совместимой с технологией производства интегральных схем. Технический результат - повышение механической и электрической прочности, плотности автоэмиссионных токов и деградационной стойкости при работе с повышенными напряжениями. 2 ил.

2474909
выдан:
опубликован: 10.02.2013
СПОСОБ ОБРАБОТКИ ЭЛЕКТРОННО-ПОЛЕВЫХ КАТОДОВ

Изобретение относится к области нанотехнологии, в частности к способу обработки поверхности электронно-полевых катодов, изготовленных из углеродных наноматериалов, которые могут использоваться для производства дисплеев, осветительных элементов, радиочастотных усилителей, в рентгеновских установках, ионизаторов газовых сред, измерителей вакуума. Технический результат - получение однородной электронно-полевой эмиссии с поверхности катода, улучшение характеристик электронно-полевой эмиссии и увеличение производительности. Способ обработки электронно-полевых катодов включает сканирование поверхности электронно-полевого катода с нанесенным электронно-полевым эмиттером, металлическим электродом, на который подают положительный потенциал относительно катода, в качестве электронно-полевого эмиттера используют углеродные нанотрубы, в качестве сканирующего электрода используют металлическую нить, сканирование ведут при перемещении электронно-полевого катода и/или электрода, при этом на электрод подают постоянный или импульсный потенциал с последующим прожиганием заданной структуры на поверхности эмиттера. 6 з.п. ф-лы, 4 ил.

2468462
выдан:
опубликован: 27.11.2012
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ АВТОЭМИССИОННОГО КАТОДА

Изобретение может быть использовано в электронике и нанотехнологии. Способ получения материала для автоэмиссионного катода на основе углеродных нанотруб заключается в осаждении модифицирующего материала - дисульфида молибдена на поверхность нанотруб из смеси раствора тиомочевины и молибдата аммония в замкнутом объеме в течение 1-3 суток при 180-250°С. Изобретение позволяет упростить способ получения материала для автоэмиссионного катода и получать материал, характеризующийся пониженным пороговым напряжением включения электронной эмиссии, улучшением полевой эмиссии нанотрубы и повышением плотности тока эмиссии. 4 ил.

2463253
выдан:
опубликован: 10.10.2012
МАТЕРИАЛ ЭМИССИОННОГО ПОКРЫТИЯ КАТОДОВ ЭЛЕКТРОННО-ИОННЫХ ПРИБОРОВ

Изобретение относится к электротехнической промышленности и может быть использовано в производстве газоразрядных источников света высокого давления. Материал эмиссионного покрытия катодов содержит оксид кальция и оксид иттрия, или оксид иттербия, или оксид скандия при следующем соотношении компонентов (мол.%): оксид кальция - 50-51, оксид иттрия, или оксид иттербия, или оксид скандия - 50-49. Технический результат- повышение стойкости к термическому испарению с рабочей температурой катода ~1700-1950 К. 2 табл., 2 ил.

2462781
выдан:
опубликован: 27.09.2012
МЕТАЛЛОПОРИСТЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к электронной технике, а именно к металлопористым катодам электронных приборов СВЧ-типа и способам изготовления их катодов. Формируют корпус и вольфрамовую губку, пропитывают последнюю активным веществом, закрепляют ее в корпусе, осуществляют механическую обработку эмиттирующей поверхности катода и направляют импульсное лазерное излучение на эмиттирующую поверхность. В результате лазерного воздействия происходит вскрытие завальцованных пор с обеспечением формирования равномерно распределенных по эмиттирующей поверхности микроотверстий. Длина волны (мкм) импульсного лазерного излучения и глубина микроотверстий h (мкм) подчинены соотношению: /h=0.009÷0.13 для ультрафиолетовой области излучения, /h=0.019÷0.26 для диапазона видимого излучения, /h=0.039÷0.84 для инфракрасного излучения. Затем наносят на эмиттирующую поверхность слой металла платиновой группы и осуществляют термическую обработку эмиттирующей поверхности. Способ обеспечивает выполнение металлопористых катодов идентичными по размерам микроотверстий на одинаковом расстоянии микроотверстий друг от друга. Технический результат - повышение равномерности распределения микроотверстий по эмиттирующей поверхности катода, идентичности их геометрических размеров, увеличение эмиссионной способности катода, упрощение и сокращение времени процесса изготовления катода. 2 н.п. ф-лы, 2 ил.

2459305
выдан:
опубликован: 20.08.2012
ШТЫРЕВОЙ КАТОД СВАРОЧНОЙ ЭЛЕКТРОННОЙ ПУШКИ

Изобретение предназначено для использования в электронных сварочных пушках и других электронно-лучевых приборах. Технический результат - уменьшение тепловых потерь и расходуемой на разогрев катода мощности, увеличение срока службы катода за счет более медленного испарения рабочей части катода при электронной бомбардировке ее меньшей мощностью, а также уменьшение в несколько раз массы тантала, расходуемой на изготовление катода. В штыревом катоде сварочной электронной пушки, представляющем собой стержень с конической шляпкой, стержень выполнен составным из материалов с разными коэффициентами теплопроводности, при этом коэффициент теплопроводности части стержня, являющейся рабочей, превышает коэффициент теплопроводности части стержня, служащей для крепления катода к элементам катодного узла. Рабочая часть катода выполнена из тантала. Коэффициент теплопроводности материала части стержня, служащей для крепления катода к элементам катодного узла, в 3-4 раза меньше коэффициента теплопроводности тантала. Рабочая часть катода присоединена к части стержня, служащей для крепления катода к элементам катодного узла, через переходную трубку, выполненную из материала, температура плавления которого, по крайней мере, на 400°С выше рабочей температуры катода. Между частью стержня, служащей для крепления катода к элементам катодного узла, и переходной трубкой введена промежуточная деталь в виде кольца или короткого стержня из материала, температура плавления которого выше рабочей температуры катода. 5 з.п. ф-лы., 1 ил., 1 табл.

2457570
выдан:
опубликован: 27.07.2012
ФОТОКАТОД

Изобретение относится к области электровакуумной электронной техники. Фотокатод включает диэлектрическую или полупроводниковую подложку, на которую нанесен слой эмитирующего фотоэлектроны полупроводника n-типа проводимости с шириной запрещенной зоны Eg1. На поверхности слоя полупроводника выращены квантовые точки из полупроводника n-типа проводимости с шириной запрещенной зоны подложки Eg2, декорированные атомами электроположительного металла общей толщиной до 3,0 монослоев. Eg2<Eg 1. Технический результат - увеличение квантового выхода фотоэмиссии и возможность селективно анализировать и регистрировать падающее излучение в различных спектральных диапазонах. 3 з.п. ф-лы, 5 ил.

2454750
выдан:
опубликован: 27.06.2012
ШИХТА ДЛЯ КОМПОЗИЦИОННОГО КАТОДА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к порошковой металлургии, в частности к получению композиционных катодов для ионно-плазменного напыления многокомпонентных наноструктурных покрытий. Может использоваться в химической, станкоинструментальной промышленности, машиностроении и металлургии. Шихта для композиционного катода содержит, мас.%: ТiАl3 20,0-60,0; титан остальное, при этом дисперсность исходных порошков составляет 50-125 мкм. Из шихты получают композиционные катоды путем прессования заготовок необходимой формы и размеров и последующего спекания в вакууме. Полученные катоды имеют однородную структуру с мелкодисперсной пористостью, сохраняют свою исходную форму, не требуют дальнейшей термо- и механической обработки и пригодны для использования в оборудовании для нанесения ионно-плазменных покрытий. 2 н. и 5 з.п. ф-лы, 1 табл., 5 пр.

2454474
выдан:
опубликован: 27.06.2012
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОВОЛЬТНОГО ЭЛЕКТРОДА

Способ включает заполнение прозрачной электропроводной жидкостью пространства между двумя герметизированными по периметру прозрачными листами из жесткого электроизолирующего материала, размещение в нем трубки короткой иглы с пробкой в головке и трубки длинной иглы, снабженной мандреном из нержавеющего металла, и прикрепление к мандрену гибкого электропровода с возможностью подсоединения его к источнику электроэнергии. Сначала на поверхность нижнего листа у противоположных его краев укладывают одинакового диаметра трубки игл, размещая их концы у диагонально противоположных углов листа, и по краю листа на стороне короткой трубки размещают стержень с толщиной, равной диаметру трубки. Затем по поверхности края листа и на стержень наносят герметик с толщиной образуемого валика, превышающей диаметр трубки. На валик из герметика укладывают верхний лист до контакта его поверхности с трубками игл и со стержнем. После затвердевания герметика электрод устанавливают вертикально, располагая канюлю иглы с короткой трубкой в наивысшем положении. Через просвет длинной иглы полость между листами заполняют жидкостью, выпуская воздух через просвет короткой трубки, после чего герметизируют просвет головки длинной иглы мандреном, а короткой иглы - пробкой. Технический результат - упрощение и повышение качества изготовления электрода за счет обеспечения более точной равномерной толщины слоя жидкости в электроде с исключением образования в нем воздушных пузырьков и повышения надежности герметизации полости электрода. 3 з.п. ф-лы, 8 ил.

2452055
выдан:
опубликован: 27.05.2012
КАТОДНО-ПОДОГРЕВАТЕЛЬНЫЙ УЗЕЛ

Изобретение относится к электронной технике, в частности к устройству источника электронов, и может быть использовано в ускорителях электронов, ускоренный пучок которых используется для радиационных технологий, таких как очистка сточных вод, очистка газов электростанций, работающих на угле, в линейных ускорителях, используемых для рентгеновской диагностики в медицинских целях, и в др. технологиях. Технический результат - увеличение срока службы катодно-подогревательного узла при уменьшении мощности потребляемой им, упрощение конструкции. Катодно-подогревательный узел содержит цилиндрический керн, в торце которого укреплена таблетка из эмитирующего вещества, подогреватель, кольцевой анизотропный пиролитический графитовый держатель, изолятор подогревателя, опорный фланец, изолятор токоввода. При этом держатель керна выполнен в виде стакана, в который вставлен изолятор подогревателя, а таблетка из эмитирующего вещества опирается на держатель керна через втулку из графита, а кольцевой пиролитический анизотропный держатель продлен до торцевой поверхности держателя керна. 2 з.п. ф-лы, 4 ил.

2446503
выдан:
опубликован: 27.03.2012
ЭКРАН

Изобретение относится к области эргономики, а именно к конструкциям оптических экранов. Предложенный экран, оптический и/или технический, с вогнутой формой радиусом кривизны, выполнен таким образом, что его одна или несколько видимых наблюдателю поверхностей имеют вогнутую форму с радиусом кривизны R, более чем вдвое превышающим расстояние от экрана L до наблюдателя и не превышающим двойного расстояния до ближайшего источника, блик от которого требуется исключить. Техническим результатом изобретения является снижение или ослабление бликов от экрана, видимых наблюдателю. 1 з.п. ф-лы.

2439638
выдан:
опубликован: 10.01.2012
ПЛАЗМЕННЫЙ КАТОД

Изобретение относится к области электрореактивных двигателей, а именно к широкому классу плазменных двигателей (холловских, ионных), использующих в своем составе катоды. Технический результат - улучшение рабочих и эксплуатационных характеристик катодов для плазменных двигателей. Катод плазменного двигателя включает в себя корпус, в выходной части которого выполнен канал для прохода плазмообразующего вещества. В корпус установлен эмиттер с осевым отверстием, внутренняя полость которого сообщена с источником плазмообразующего вещества, причем эмиттер изготовлен из соединения иридия (Ir) с редкоземельным металлом, в котором возможно присутствуют добавки порошка иридия и металла платиновой группы. Эмиттер выполнен из отдельных цилиндрических втулок, пристыкованных соосно друг к другу по торцевым поверхностям. При этом внутренний диаметр втулок эмиттера выполнен различным, причем втулка, расположенная у выходной части катода, имеет наибольший внутренний диаметр. 1 з.п. ф-лы, 1 ил., 1 табл.

2438208
выдан:
опубликован: 27.12.2011
УГЛЕРОДСОДЕРЖАЩИЙ НАНОМАТЕРИАЛ С НИЗКИМ ПОРОГОМ ПОЛЕВОЙ ЭМИССИИ ЭЛЕКТРОНОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ)

Изобретение относится к углеродсодержащим наноматериалам с низким порогом полевой эмиссии электронов (НППЭЭ). Техническим результатом изобретения является получение дисперсных материалов с (НППЭЭ) и упрощение технологии их изготовления. Согласно изобретению углеродсодержащий наноматериал с НППЭЭ представляет собой дисперсный порошок с размером частиц менее 50 мкм, состоящий из ядра и поверхностного слоя, при этом ядро сформировано из диэлектрического (ДЭ) или полупроводникового (ПП) материала, и поверхностного слоя из графитоподобного углерода (ГПУ) толщиной 0,5-50 нм. Способы получения наноматериала (варианты) реализуются следующим образом. 1. Порошки ДЭ или ПП материала термообрабатывают в среде углеводородов при температуре, превышающей температуру их термического разложения, в течение времени, необходимого для образования на поверхности частиц порошка слоя ГПУ толщиной 0,5-50 нм. 2. Порошки алмаза термообрабатывают в инертной среде или вакууме при температуре, превышающей температуру перехода алмаза в графит, в течение времени, необходимого для образования на поверхности частиц алмаза слоя ГПУ толщиной 0,5-50 нм. 3. Порошки ковалентных или металлоподобных карбидов термообрабатывают в хлоре при температуре, превышающей температуру их взаимодействия с хлором с образованием газообразных хлоридов и углерода, в течение времени, необходимого для образования на поверхности частиц порошка слоя ГПУ толщиной 0,5-50 нм. 4 н. и 4 з.п. ф-лы, 1 ил.

2431900
выдан:
опубликован: 20.10.2011
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО КАТОДА

Изобретение относится к порошковой металлургии, в частности к способам получения композиционных катодов для ионно-плазменного напыления многокомпонентных наноструктурных нитридных покрытий и может быть использовано в химической, станкоинструментальной промышленности, машиностроении, металлургии для получения наноструктурных покрытий методом ионно-плазменного напыления. Способ изготовления композиционного катода включает приготовление порошковой смеси, прессование заготовок, последующее их спекание в вакууме, при этом порошковую смесь готовят из порошков титана и легирующего компонента, выбранного из группы: медь, кремний, при следующем соотношении компонентов, мас.%: легирующий компонент, выбранный из группы медь, кремний - 2,0-30,0; титан - остальное. Дисперсность исходных порошков составляет 40-120 мкм. Прессование заготовок осуществляют до пористости от 15 до 20%. Нагрев вакуумной печи до температуры спекания заготовок осуществляют со скоростью 2-3 град/мин. Вакуумное спекание заготовок осуществляют в диапазоне температур 1000-1250°С. При температуре спекания заготовок осуществляют изотермическую выдержку 1-3 часа. Технический результат - снижение энергозатрат на изготовление катода, упрощение процесса ионно-плазменной обработки с его использованием. 6 з.п. ф-лы, 1 табл., 2 ил.

2421844
выдан:
опубликован: 20.06.2011
УСТРОЙСТВО ДЛЯ ЭМИССИИ ЭЛЕКТРОНОВ И ПАНЕЛЬ ДЛЯ СОЗДАНИЯ ИЗОБРАЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ ЭТОГО УСТРОЙСТВА, А ТАКЖЕ УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ИЗОБРАЖЕНИЯ И УСТРОЙСТВО ДЛЯ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Изобретение относится к устройству для эмиссии электронов, по типу относящемуся к устройствам с эмиссией под действием электрического поля. Настоящее изобретение также относится к панели для создания изображения, использующей устройство для эмиссии электронов, устройству для создания изображения, которое создает изображение на основе вводимого сигнала изображения, и устройству отображения информации, которое отображает сигнал, включенный во вводимый информационный сигнал как изображение. Технический результат - создание устройства для эмиссии электронов указанного типа с эмиссией под действием электрического поля для использования в устройстве для создания изображения, чтобы обеспечить продолжительную эмиссию электронов в устойчивом режиме при более низком рабочем напряжении и более низкой степени вакуума (более высоком давлении). Достигается тем, что устройство для эмиссии электронов включает поликристаллическую пленку из борида лантана и размер кристаллита, образующего эту поликристаллическую пленку, находится в диапазоне от 2,5 до 100 нм, включая границы диапазона; в предпочтительном случае толщина поликристаллической пленки составляет 100 нм или менее. 4 н. и 8 з.п. ф-лы, 19 ил., 4 табл.

2421843
выдан:
опубликован: 20.06.2011
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОГО ХОЛОДНОГО КАТОДА ГАЗОВОГО ЛАЗЕРА

Изобретение относится к области квантовой электроники и может быть использовано при производстве газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Способ изготовления полого холодного катода газового лазера, включающий изготовление заготовки, напыление на ее внутреннюю поверхность эмитирующей пленки и окисление ее в кислороде, в котором заготовку катода и эмитирующую пленку выполняют из алюминия, проводят термообработку катода при давлении не выше 0,00133 Па при температуре 573 593 К в течение 30 40 мин с последующим ступенчатым окислением эмитирующей пленки при нормальной температуре разрядом в кислороде при плотностях тока 0,15 0,9 мА/см и давлении кислорода 40 Па 80 Па в течение 45 55 мин, затем при плотности тока 0,15 0,3 мА/см2 и давлении кислорода 150 200 Па в течение 25 35 мин. Технический результат - упрощение технологии за счет исключения термического окисления, уменьшения затрачиваемого технологического времени и необходимости использования высокотоксичного бериллия. 1 табл.

2419913
выдан:
опубликован: 27.05.2011
КАТОД ПЛАЗМЕННОГО УСКОРИТЕЛЯ

Изобретение относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды. Технический результат - повышение надежности работы катода за счет полного предотвращения возможности образования электрического контакта между спиралью нагревателя и держателем эмиттера, устранения возможности замыкания витков спирали друг с другом в процессе стартового разогрева, повышения механической прочности катода, устранения влияния теплового расширения электроизолятора на элементы конструкции катода. Катод плазменного ускорителя включает в себя поджигной электрод, эмиттер с держателем, трубопровод подачи к эмиттеру плазмообразующего вещества, нагревательный узел, включающий соосно установленные друг относительно друга корпус, спираль и электроизолятор, с внутренней стороны которого размещена спираль, а с внешней - корпус. Он содержит также токоподводы на концах спирали, имеющие участки контакта с внутренней поверхностью электроизолятора. На внутренней поверхности средней части электроизолятора выполнена спиральная канавка, в которой размещена большая часть спирали. При этом у обоих концов спирали на длине не менее одного шага ее витка на внутренней поверхности электроизолятора выполнены участки цилиндрической формы. Дополнительно к этому корпус нагревательного узла может охватывать полностью внешнюю поверхность электроизолятора и иметь на конце, обращенном к выходной части поджигного электрода, выступы, направленные в сторону торцевой части электроизолятора. Кроме того, между выступом и торцевой частью электроизолятора может быть установлена пружина. 2 з.п. ф-лы, 1 ил.

2418337
выдан:
опубликован: 10.05.2011
ХОЛОДНЫЙ КАТОД

Изобретение относится к источникам свободных электронов. Холодный катод, состоит из проводящего электрический ток твердого тела, параллельно поверхности которого на расстоянии менее 0,1 мм от нее установлена пленка графита толщиной от одного до шести атомных слоев, пленка графита держится на расположенных на поверхности твердого тела частицах диэлектрика с электрической прочностью 108÷109 В/м. Параллельно пленке графита над ее внешней поверхностью установлена металлическая сетка на непроводящем электрический ток держателе, к твердому телу, пленке и сетке присоединены электрические вводы. Между пленкой графита и твердым телом прикладывают электрическое напряжение, при этом под действием электрического поля со средней напряженностью более 108 В/м возникает ток автоэлектронной эмиссии с поверхности твердого тела. Технический результат: получение потока свободных электронов с плотностью эмиссионного тока до 100 кА/см2 . Эффективность холодного катода (отношение эмиссионного тока к току в промежутке твердое тело - пленка графита) равна 0,90-0,99. 4 з.п. ф-лы, 1 ил.

2408947
выдан:
опубликован: 10.01.2011
СПОСОБ ФОРМИРОВАНИЯ ГРАФЕНОВЫХ ПОЛЕВЫХ ЭМИТТЕРОВ

Изобретение относится к области электротехники, в частности к способу формирования графеновых полевых эмиттеров, используемых в различных электровакуумных устройствах, базирующихся на эмиссии электронов. В предложенном способе изготавливают пленочные плоские элементы, содержащие формообразующий и функциональный графеновые слои. При этом плоские пленочные элементы формируют на подложке с требуемым расположением по ее площади, в частности, регулярным. Затем пленочные плоские элементы отделяют от подложки и трансформируют их в эмиттеры с заданной трехмерной пространственной конфигурацией. Трансформацию осуществляют за счет действия механических внутренних напряжений, которые вводят в формообразующие слои либо при изготовлении пленочных плоских элементов, либо при трансформации, либо при отделении и трансформации плоских элементов в эмиттеры. Изготовленные по предложенному способу эмиттеры прецизионно расположены над подложкой и обладают прецизионно заданной пространственной конфигурацией и геометрическими размерами. Однородность эмиссии электронов по массиву эмиттеров, требуемая плотность эмиссии электронов, ее управляемость, масштабируемость размеров эмиттеров, оптимизация формы эмиттеров иерархической структуры, управляемость током эмиссии каждого из эмиттеров являются техническим результатом изобретения. 15 з.п. ф-лы, 9 ил.

2400858
выдан:
опубликован: 27.09.2010
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНОГО ПОЛЕВОГО ЭМИТТЕРА

Изобретение относится к области электронной техники. Технический результат - повышение эффективности и стабильности эмиссии с уменьшением порогового значения напряженности электрического поля. Способ изготовления многослойного полевого эмиттера состоит в получении вольфрамового острия путем химического травления вольфрамовой нити щелочным раствором, закреплении вольфрамового острия в нагревательном элементе, очистки вольфрамового острия в вакууме путем прогрева до получения поликристаллической решетки чистого вольфрама и последующем напылении. Напыление осуществляют последовательным нанесением слоя TiO2 толщиной не более двух монослоев, а затем слоя Cs, толщиной не более монослоя, при этом осуществляют контроль за током эмиссии до максимального его значения 2-3 мкА при расстоянии от анода до вольфрамового острия в пределах 23-27 мм и напряжении между ними в пределах 6±0,5 кВ. Способ может быть использован при создании плоских автоэмиссионных дисплеев для мониторов и телевизоров, не уступающих электронно-лучевым дисплеям по разрешению и яркости, магнетронов с безнакальным автокатодом, которые позволяют создавать современные и экономичные радары, высокочастотных полевых эмиссионных диодов. 1 з.п. ф-лы, 3 ил., 2 табл.

2399114
выдан:
опубликован: 10.09.2010
ЗОНД ДЛЯ ЛОКАЛЬНОГО АНОДНОГО ОКИСЛЕНИЯ МАТЕРИАЛОВ

Изобретение относится к областям микроэлектроники, электрохимии, микро- и нанолитографии и т.д. и может быть использовано для локального анодного окисления материалов, используемого при создании элементов микросхем, микро- и наноструктур, микромеханических и сенсорных систем. Согласно изобретению в зонде для локального анодного окисления материалов, выполненном в виде иглы с покрытием, электропроводящие свойства материалов иглы и покрытия, а также форма покрытия на игле подобраны так, что по крайней мере поверхность острия иглы обладает свойствами диэлектрика, а остальная часть иглы способна пропускать по крайней мере поверхностный электрический ток, причем ближайшая точка электропроводящей поверхности иглы удалена от крайней точки острия иглы на расстояние не более 1 микрометра. Техническим результатом изобретения является повышение более чем в 3 раза срока эксплуатации известного зонда для локального анодного окисления материалов, осуществление более точного контроля за процессом локального окисления материалов и увеличение более чем в два раза пространственного разрешения, с которым формируют наноструктуры на окисляемых материалах. 3 з.п. ф-лы, 3 ил.

2383078
выдан:
опубликован: 27.02.2010
КАТОД ПРЯМОГО НАКАЛА

Катод прямого накала предназначен для электровакуумных приборов, в частности рентгеновских трубок. Техническим результатом является повышение стабильности эмиссионных характеристик и повышение срока службы. Эмиттер катода выполнен двухслойным, причем подложка выполнена из тугоплавкого металла или сплава, а эмитирующий электроны слой из металла с меньшей работой выхода по сравнению с материалом подложки, легированного одним из компонентов материала подложки. 8 з.п. ф-лы, 3 ил.

2373602
выдан:
опубликован: 20.11.2009
Наверх