способ получения цис-1,4-полидиенов
Классы МПК: | C08C19/00 Химическая модификация каучука C08F4/52 бор, алюминий, галлий, индий, таллий или редкоземельные элементы C08F8/46 реакция с ненасыщенными дикарбоновыми кислотами или их ангидридами, например малеиновой кислотой или малеиновым ангидридом C08F36/06 бутадиен C08F236/06 бутадиен |
Автор(ы): | Сахабутдинов Анас Гаптынурович (RU), Борейко Наталья Павловна (RU), Ахметов Ильдар Гумерович (RU), Кубанов Кирилл Михайлович (RU), Фазилова Диляра Равилевна (RU), Амирханов Ахтям Талипович (RU), Аглямов Ирек Ангамович (RU), Мисбахов Ильяс Рафикович (RU), Рухлядев Олег Васильевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Нижнекамскнефтехим" (RU) |
Приоритеты: |
подача заявки:
2012-05-22 публикация патента:
10.12.2013 |
Изобретение относится к технологии получения цис-1,4-полидиенов полимеризацией бутадиена, изопрена или их смесей в среде углеводородного растворителя в присутствии катализатора Циглера-Натта на основе редкоземельных элементов. На заключительном этапе процесса полимеризации в реакционную массу вводят сополимер -олефина и малеинового ангидрида в массовом соотношении цис-1,4-полидиен: сополимер, равном 1:1·10-4 - 1·10-1. Технический результат - получение цис-1,4-полидиенов, обладающих хладотекучестью не более 10 мм/ч, динамической вязкостью 5,43% раствора в толуоле не более 350 мПа·с, полидисперсностью не более 2,5 и долей полимера с молекулярной массой более 10 6 не более 7,0%. 2 табл., 7 пр.
Формула изобретения
Способ получения цис-1,4-полидиенов полимеризацией бутадиена, изопрена или их смесей в среде углеводородного растворителя в присутствии катализатора Циглера-Натта на основе редкоземельных элементов, отличающийся тем, что на заключительном этапе процесса полимеризации в реакционную массу вводят сополимер -олефина и малеинового ангидрида, где -олефин выбран из группы, включающей октен-1, децен-1, додецен-1, тетрадецен-1, гексадецен-1, в массовом соотношении цис-1,4-полидиен: сополимер, равном 1:1·10-4 - 1·10-1.
Описание изобретения к патенту
Изобретение относится к технологии получения цис-1,4-полидиенов под действием катализаторов Циглера-Натта на основе редкоземельных элементов и может быть использовано в промышленности синтетического каучука.
Известен способ получения полимеров бутадиена, изопрена и их смесей в присутствии каталитической системы на основе соединения редкоземельного элемента (РЗЭ) с атомным номером с 57 по 71 Периодической системы. Способ включает стадию полимеризации мономеров в среде ароматических, алифатических, циклических и галогенированных углеводородов при температурах от - 20 до 150°С и стадию модификации путем взаимодействия реакционной массы с органогалидом олова при температуре 160°С в течение 0,1-10 часов. Указанный способ позволяет улучшить сопротивление износу резин на основе полученных полимеров (Патент США № 5064910, МКИ С08F 8/42, опубл. 1991).
К недостаткам способа можно отнести необходимость поддержания высокой температуры реакции модификации, а также нестабильность предлагаемого модификатора.
Известен способ получения цис-1,4-полибутадиена в среде ароматического растворителя с применением катализатора Циглера-Натта на основе редкоземельных соединений. По данному способу полимеризат цис-1,4-полибутадиена смешивают с раствором полигексена-1 в ароматическом растворителе при соотношении цис-1,4-полибутадиен: полигексен-1 равном 100:5-20. Далее смесь полимеров выделяют из раствора водной дегазацией и обезвоживают при температуре 115-120°С. Полученный полимер характеризуется пониженными хладотекучестью и пластичностью (Патент РФ № 2087489, МКИ С08F 136/06, опубл. 1995).
Существенным недостатком способа является использование в процессе высококипящего ароматического растворителя, что увеличивает энергозатраты на стадии водной дегазации полимера. Также введение полигексена-1 приводит к снижению вязкости цис-1,4-полибутадиена, и возникает необходимость получения исходного полимера с более высокой вязкостью. Это повышает нагрузки на приводы перемешивающих устройств и сопровождается более быстрой забивкой полимеризаторов.
Известен способ полимеризации сопряженных диенов в ароматическом, алифатическом и/или циклическом углеводородном растворителе в присутствии катализатора Циглера-Натта на основе карбоксилата неодима в адиабатическом режиме при температурах от -20 до 150°С. При завершении процесса полимеризации производят дезактивацию катализатора и снижают давление в системе для удаления легкокипящих соединений. Затем реакционную массу обрабатывают серусодержащим соединением, выбранным из ряда: S2Cl2 SC12 , SOCl2. Полимер, полученный по данному способу демонстрирует пониженную хладотекучесть и отсутствие запаха (Патент США № 5567784, С08С 2/00, опубл. 1996).
Недостатками данного способа являются высокая токсичность используемых серусодержащих соединений, а также необходимость полного удаления легкокипящих соединений, остатки которых могут при взаимодействии с модификатором образовывать соединения с неприятным запахом.
Описана технология получения диеновых эластомеров путем полимеризации сопряженных диенов в углеводородном растворителе или без него в присутствии каталитической системы, на основе фосфорной соли РЗЭ. Процесс проводят при температурах от -10 до 50°С. При полной конверсии мономера в полимеризат вводят дополнительное количество каталитического комплекса и раствор модификатора (тетрахлорида титана или олова) в метилциклогексане или циклогексане при массовом соотношении модификатор: соль неодима равном 2-20:1. Полимеры, полученные по данному способу, хорошо кристаллизуются под напряжением, что приближает их по свойствам к натуральному каучуку (Патент США № 7319126, МКИ С08F 12/34, опубл.2008).
В качестве недостатков следует отметить то, что предлагаемый модификатор обладает низкой стабильностью и дымит на воздухе. Также для полного протекания модификации предлагается дополнительная дозировка каталитического комплекса, что усложняет технологию процесса.
Известен способ получения цис-1,4-полибутадиена и цис-1,4-сополимера бутадиена и изопрена при мольном соотношении бутадиен: изопрен равном 50:50 - 99:1 в среде углеводородного растворителя при температурах 0-80°С в присутствии каталитического комплекса на основе продукта взаимодействия РЗЭ, алкилалюминия и алкилалюминийгалогенида. При конверсии мономеров 50-85% в реакционную среду вводится хлорсодержащее соединение в мольном соотношении к РЗЭ равном 0,5:1 - 15:1, после чего реакционная масса выдерживается в течение 10-180 минут. Полученные по данному способу полимеры обладают пониженной пластичностью и хладотекучестью (Патент РФ № 2127280, МКИ С08F 36/06, С08F 4/54, опубл. 1999).
Недостатками данного способа является использование в качестве модификаторов дорогостоящих хлорзамещенных алюминийорганических соединений, а их замена на доступные хлорзамещенные углеводороды приводит к значительному увеличению времени модификации и дозировки модификатора.
Известен способ получения модифицированных цис-1,4-(со)полимеров бутадиена путем (со)полимеризации бутадиена в присутствии катализатора на основе РЗЭ и алюминийорганического соединения с последующей обработкой (со)полимера модифицирующим агентом при массовом соотношении модифицирующий агент: (со)полимер равном 0,01 - 0,1:1000. В качестве модифицирующего агента предпочтительно используют растворы диизопропилксантогендисульфида и дибутилксанетогендисульфида в алифатическом растворителе. (Со)полимеры, полученные по данному способу, характеризуются низкой хладотекучестью и кинематической вязкостью (Патент РФ № 2426747, МКИ С08С 19/20, С08F 36/06, С08F 136/06, С08F 236/06, С08F 8/34, опубл. 2011).
К недостаткам данного способа можно отнести необходимость ведения процесса модификации продолжительное время при повышенных температурах, что требует дополнительного нагрева реакционной массы перед введением модифицирующего агента и усложняет технологическую схему.
Наиболее близким к настоящему изобретению по технической сущности и достигаемому результату является способ получения полибутадиена с низкой степенью разветвленности. Способ включает полимеризацию бутадиена в органическом растворителе при температурах 20-120°С в течение 60-90 минут под действием катализатора на основе карбоксилата неодима. Дальнейшую обработку полученного раствора полимера производят функционализированным модификатором, выбранным из ряда ненасыщенных натуральных масел, олигомеров бутадиена и/или изопрена, сополимеров бутадиена и/или изопрена с винилароматическими соединениями. При этом указанные соединения функционализированы эпоксидными, ангидридными или эфирными группами. Модификацию осуществляют при температурах 20-150°С в течение 15 минут. Полученный полимер характеризуется содержанием цис-1,4-звеньев не менее 93%, полидисперсностью не более 2,5 и низкой хладотекучестью (Патент США № 7112632, МКИ С08F 8/08, С08F 136/06, опубл. 2006).
Однако данный способ имеет ряд недостатков. Введение модификатора приводит к существенному увеличению высокомолекулярной фракции - доли полимера с молекулярной массой более 10 и повышению его растворной вязкости, что ухудшает технологические свойства каучука и динамические характеристики резин на его основе. Кроме того, наличие в модификаторах остаточной ненасыщенности и реакционноспособных функциональных групп определяет их невысокую стабильность при хранении.
Технической задачей настоящего изобретения является способ получения цис-1,4-полидиенов, обладающих хладотекучестью не более 10 мм/ч, динамической вязкостью 5,43% раствора в толуоле не более 350 мПа*с, полидисперсностью не более 2,5 и долей полимера с молекулярной массой более 106 не более 7,0%.
Указанный технический результат достигается тем, что в способе получения цис-1,4-полидиенов полимеризацией бутадиена, изопрена или их смесей в среде углеводородного растворителя в присутствии катализатора Циглера-Натта на основе редкоземельных элементов на заключительном этапе процесса полимеризации в реакционную массу вводят сополимер -олефина и малеинового ангидрида, где -олефин выбран из группы, включающей октен-1, децен-1, додецен-1, тетрадецен-1, гексадецен-1, в массовом соотношении цис-1,4-полидиен: сополимер, равном 1:1·10-4 - 1·10-1.
Наличие в структуре сополимера алифатических фрагментов, имеющих высокое сродство к цис-1,4-полидиенам, позволяет равномерно распределить сополимер -олефина и малеинового ангидрида в высоковязкой реакционной среде. Вместе с тем, фрагменты малеинового ангидрида эффективно взаимодействуют с активными центрами полимеризации с образованием разветвленных макромолекул. В случае промышленной реализации предлагаемого способа дополнительным преимуществом является отсутствие непредельности в сополимере и как следствие стабильность его свойств при хранении.
Полимеризацию мономеров осуществляют в алифатических углеводородах при температуре 0-120°С, предпочтительно при 50-70°С. В качестве мономеров используют бутадиен, изопрен или их смеси. Сополимер в реакционную массу вводят в виде раствора в углеводородах, предпочтительно нефрасе. По окончании взаимодействия полимер высаживают введением этанола, содержащего антиоксидант, и сушат в вакууме до постоянной массы.
В качестве катализатора предпочтительно использование заранее синтезированных смесей, полученных путем смешения карбоксилата лантаноида, ненасыщенного углеводорода и алюминийорганического соединения, дальнейшего введения предварительно сформированного комплекса алюминийорганического соединения и основания Льюиса, взаимодействия полученной смеси с источником галогена и последующей активацией каталитической системы введением алкилалюмоксана (Патент РФ № 2422468, МКИ С08F 36/06, С08F 136/06, С08F 4/44 опубл.2011).
В качестве сополимера -олефина и малеинового ангидрида используют сополимеры на основе -олефинов из ряда: октен-1, децен-1, додецен-1, тетрадецен-1, гексадецен-1. Сополимеры характеризуются статистическим распределением мономерных звеньев, среднечисленной молекулярной массой 1000-1500, кислотным числом 300-350 мг КОН/г и растворимостью в алифатических и ароматических углеводородах.
Введение в реакционную массу сополимера -олефина и малеинового ангидрида предпочтительно осуществлять на заключительном этапе процесса полимеризации с целью минимизации потерь мономера.
Конверсию мономера оценивали по массе сухого остатка, полученного из аликвоты реакционной массы. Хладотекучесть полимеров определяли по ГОСТ 19920.18. Динамическую вязкость раствора определяли для 5,43% масс. раствора цис-1,4-полидиена в толуоле по ГОСТ 33. Молекулярно-массовые характеристики определяли методом гельпроникающей хроматографии, содержание цис-1,4-звеньев - методом ПК-спектроскопии.
Предлагаемое изобретение иллюстрируют следующие примеры.
Пример 1
В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при постоянном перемешивании вводят раствор неодеканоата неодима в гексане, толуольный раствор пиперилена и толуольный раствор диизобутилалюминийгидрида, выдерживают в течение 30 минут, при этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение составляет 1:5:10. К полученной смеси добавляют предварительно сформированный комплекс, полученный путем смешивания толуольного раствора триизобутилалюминия и толуольного раствора дифенилового эфира, далее вводят толуольный раствор гексахлорпараксилола. Приготовленную каталитическую систему активируют введением толуольного раствора метилалюмоксана. При этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение: основание Льюиса: источник галогена: алкилалюмоксан (в пересчете на алюминий) составляет 1:5:20:1:0,2:40.
Полученную каталитическую систему с концентрацией ионов неодима 0,019 г·ат/л используют для полимеризации бутадиена. С этой целью в металлический аппарат объемом 1 дм, снабженный перемешивающим устройством и рубашкой для поддержания заданной температуры, вводят 800 мл гексанового растворителя, содержащего 64,3 г бутадиена. Аппарат термостатируют и вводят каталитическую систему, полимеризацию проводят при 60°С. Мольное соотношение бутадиена к неодиму при этом равно 12000.
Через 30 минут при достижении конверсии бутадиена 80% в реактор вводят раствор сополимера октена-1 и малеинового ангидрида в гексановом растворителе. Через 5 минут реакционную массу сливают и стабилизируют путем ввода раствора антиоксиданта в этиловом спирте, далее полученный полимер выделяют и сушат до постоянной массы.
Условия полимеризации и ввода сополимера представлены в таблице 1, свойства цис-1,4-полидиена представлены в таблице 2.
Пример 2
В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при постоянном перемешивании вводят раствор нафтената неодима в гексане, толуольный раствор бутадиена и толуольный раствор триизобутилалюминия, выдерживают в течение 30 минут, при этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение составляет 1:100:10. К полученной смеси добавляют толуольный раствор диизобутилалюминийгидрида и толуольный раствор этилалюминийсесквихлорида. Приготовленную каталитическую систему активируют введением толуольного раствора этилалюмоксана. При этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение: источник галогена: алкилалюмоксан (в пересчете на алюминий) составляет 1:100:20:0,65:100.
Полученную каталитическую систему с концентрацией ионов неодима 0,006 г·ат/л используют при полимеризации бутадиена. Полимеризацию бутадиена проводят по примеру 1. Мольное соотношение бутадиена к неодиму при этом равно 15000.
Через 45 минут при достижении конверсии бутадиена 95% в реактор вводят раствор сополимера децена-1 и малеинового ангидрида в гексановом растворителе. Через 15 минут оставшуюся реакционную массу сливают и выделяют согласно примеру 1.
Условия полимеризации и ввода сополимера представлены в таблице 1, свойства цис-1,4-полидиена представлены в таблице 2.
Пример 3
В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при постоянном перемешивании вводят гексановый раствор смеси октаноата неодима, октаноата празеодима и октаноата лантана, толуольный раствор пиперилена, толуольный раствор триизобутилалюминия, выдерживают в течение 30 минут, при этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение составляет 1:7:20. К полученной смеси добавляют предварительно сформированный комплекс, полученный путем смешивания толуольного раствора диизобутилалюминийгидрида и толуольного раствора фенилацетилацетона, далее вводят толуольный раствор диизобутилалюминийхлорида. Приготовленную каталитическую систему активируют введением толуольного раствора метилалюмоксана. При этом мольное соотношение соединение лантаноида: сопряженный диен:алюминийорганическое соединение: основание Льюиса: источник галогена: алкилалюмоксан (в пересчете на алюминий) составляет 1:7:30:5:1,4:1.
Полученную каталитическую систему с концентрацией ионов лантаниода 0,013 г·ат/л используют при полимеризации бутадиена. Полимеризацию бутадиена проводят по примеру 1. Мольное соотношение бутадиена к лантаноиду при этом равно 13000.
Через 30 минут при достижении конверсии бутадиена 95% в реактор вводят раствор сополимера додецена-1 и малеинового ангидрида в гексановом растворителе. Через 10 минут реакционную массу сливают и выделяют согласно примеру 1.
Условия полимеризации и ввода сополимера представлены в таблице 1, свойства цис-1,4-полидиена представлены в таблице 2.
Пример 4
В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при постоянном перемешивании вводят гексановый раствор октаноата лантана, толуольный раствор бутадиена, толуольный раствор диизобутилалюминийгидрида, выдерживают в течение 30 минут, при этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение составляет 1:20:10. К полученной смеси добавляют предварительно сформированный комплекс, полученный путем смешивания толуольного раствора триизобутилюминия и толуольного раствора дифенилового эфира, далее вводят толуольный раствор четыреххлористого углерода. Приготовленную каталитическую систему активируют введением толуольного раствора изобутилалюмоксана. При этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение: основание Льюиса: источник галогена: алкилалюмоксан (в пересчете на алюминий) составляет 1:20:20:2:0,3:50.
Полученную каталитическую систему с концентрацией ионов лантана 0,012 г·ат/л используют при полимеризации бутадиена. Полимеризацию бутадиена проводят по примеру 1. Мольное соотношение бутадиена к лантану при этом равно 12000.
Через 30 минут при достижении конверсии бутадиена 98% в реактор вводят раствор сополимера гексадецена-1 и малеинового ангидрида в толуоле. Через 10 минут реакционную массу сливают и выделяют согласно примеру 1.
Условия полимеризации и ввода сополимера представлены в таблице 1, свойства цис-1,4-полидиена представлены в таблице 2.
Пример 5
В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при постоянном перемешивании вводят гексановый раствор смеси октаноата неодима, октаноата празеодима и октаноата лантана, толуольный раствор пиперилена, толуольный раствор триизобутилалюминия, выдерживают в течение 30 минут, при этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение составляет 1:7:20. К полученной смеси добавляют предварительно сформированный комплекс, полученный путем смешивания толуольного раствора диизобутилалюминийгидрида и толуольного раствора фенилацетилацетона, далее вводят толуольный раствор диизобутилалюминийхлорида. Приготовленную каталитическую систему активируют введением толуольного раствора метилалюмоксана. При этом мольное соотношение соединение лантаноида: сопряженный диен:алюминийорганическое соединение: основание Льюиса: источник галогена: алкилалюмоксан (в пересчете на алюминий) составляет 1:7:30:5:1,4:1.
Полученную каталитическую систему с концентрацией ионов лантаноида 0,013 г·ат/л используют при полимеризации бутадиена и изопрена.
С этой целью в металлический аппарат объемом 1 дм3, снабженный перемешивающим устройством и рубашкой для поддержания заданной температуры, вводят 800 мл циклогексанового раствора, содержащего 32,2 г бутадиена и 40,5 г изопрена. Аппарат термостатируют и вводят каталитическую систему, полимеризацию проводят при 70°С. Мольное соотношение диенов к лантаноиду при этом равно 12000.
Через 45 минут при достижении конверсии мономеров 98% в реактор вводят раствор сополимера децена-1 и малеинового ангидрида в гексановом растворителе. Через 10 минут реакционную массу сливают и выделяют согласно примеру 1.
Условия полимеризации и ввода сополимера представлены в таблице 1, свойства цис-1,4-полидиена представлены в таблице 2.
Пример 6
В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при постоянном перемешивании вводят раствор неодеканоата неодима в гексане, толуольный раствор пиперилена и толуольный раствор диизобутилалюминийгидрида, выдерживают в течение 30 минут, при этом мольное соотношение соединение лантаноида: сопряженный диен:алюминийорганическое соединение составляет 1:5:10. К полученной смеси добавляют предварительно сформированный комплекс, полученный путем смешивания толуольного раствора триизобутилалюминия и толуольного раствора дифенилового эфира, далее вводят толуольный раствор гексахлорпараксилола. Приготовленную каталитическую систему активируют введением толуольного раствора метилалюмоксана. При этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение: основание Льюиса: источник галогена: алкилалюмоксан (в пересчете на алюминий) составляет 1:5:20:1:0,2:40.
Полученную каталитическую систему с концентрацией ионов неодима 0,019 г·ат/л используют для полимеризации изопрена. С этой целью в металлический аппарат объемом 1 дм 3, снабженный перемешивающим устройством и рубашкой для поддержания заданной температуры, вводят 800 мл гексанового раствора, содержащего 74,8 г изопрена. Аппарат термостатируют и вводят каталитическую систему, полимеризацию проводят при 70°С. Мольное соотношение изопрена к лантаноиду при этом равно 13000.
Через 60 минут при достижении конверсии изопрена 99% в реактор вводят раствор сополимера тетрадецена-1 и малеинового ангидрида в толуоле. Через 5 минут реакционную массу сливают и выделяют согласно примеру 1.
Условия полимеризации и ввода сополимера представлены в таблице 1, свойства цис-1,4-полидиена представлены в таблице 2.
Пример 7
В стеклянный реактор, предварительно прогретый в вакууме и заполненный сухим азотом, при постоянном перемешивании вводят гексановый раствор неодеканоата лантана, толуольный раствор пиперилена, толуольный раствор диизобутилалюминийгидрида, выдерживают в течение 30 минут, при этом мольное соотношение соединение лантаноида:сопряженный диен: алюминийорганическое соединение составляет 1:7:8. К полученной смеси добавляют предварительно сформированный комплекс, полученный путем смешивания толуольного раствора триизобутилалюминия и толуольного раствора трифенилфосфина, далее вводят толуольный раствор изобутилалюминийсесквихлорида. Приготовленную каталитическую систему активируют введением толуольного раствора метилалюмоксана. При этом мольное соотношение соединение лантаноида: сопряженный диен: алюминийорганическое соединение: основание Льюиса: источник галогена: алкилалюмоксан (в пересчете на алюминий) составляет 1:7:20:10:0,9:10.
Полученную каталитическую систему с концентрацией ионов лантана 0,013 г·ат/л используют при полимеризации бутадиена. Полимеризацию бутадиена проводят по примеру 1. Мольное соотношение бутадиена к лантану при этом равно 15000.
Через 45 минут конверсия бутадиена достигает значения 95%. Реакционную массу сливают и выделяют согласно примеру 1.
Условия полимеризации представлены в таблице 1, свойства цис-1,4-полидиена представлены в таблице 2.
Из приведенных примеров следует, что предложенный способ позволяет получать цис-1,4-полидиены, обладающие хладотекучестью не более 10 мм/ч, динамической вязкостью 5,43% раствора в толуоле не более 350 мПа*с, полидисперсностью не более 2,5 и долей полимера с молекулярной массой более 106 не более 7,0%.
Класс C08C19/00 Химическая модификация каучука
Класс C08F4/52 бор, алюминий, галлий, индий, таллий или редкоземельные элементы
Класс C08F8/46 реакция с ненасыщенными дикарбоновыми кислотами или их ангидридами, например малеиновой кислотой или малеиновым ангидридом