способ модификации электрохимических катализаторов на углеродном носителе

Классы МПК:C25B9/00 Электролизеры или узлы электролизеров;конструктивные элементы электролизеров; узлы конструктивных элементов, например узлы электродиафрагмы
C25B9/04 устройства для подачи тока; соединения электродов; электрическое соединение электролизеров
C25B9/10 включающие ионообменную мембрану, в которою вставлен или на которой закреплен электродный материал
B01J21/18 углерод
B01J37/30 ионный обмен
B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний
B01J23/40 металлов группы платины
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)
Приоритеты:
подача заявки:
2012-10-10
публикация патента:

Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Технический эффект - повышение эффективности модификации электрохимических катализаторов и их эксплуатационных характеристик. 1. з.п. ф-лы.

Формула изобретения

1. Способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, отличающийся тем, что для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала.

2. Способ по п.1, отличающийся тем, что производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Описание изобретения к патенту

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых в различных электрохимических системах, и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом.

Известно, что эффективность работы и стоимость электрохимических систем, используемых в различных электрохимических установках, во многом зависит от особенностей применяемых электрокатализаторов. Широкое распространение в различных электрохимических системах, например, в электролизерах и топливных элементах с твердополимерным электролитом, получили электрокатализаторы на углеродном носителе (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.8-19). К числу таких катализаторов, изготовленных по различным технологиям, относятся платина, а также металлы платиновой группы. В качестве углеродного носителя используются различные углеродные материалы, обладающие высокой дисперсностью, электропроводностью, термо- и коррозионно-устойчивостью. К ним относятся различные виды сажи, мезоуглеродные микрошарики, фуллерены, углеродные нанотрубки, нановолокна и тп. (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.9-11). Целесообразность и эффективность применения тех или иных катализаторов определяется конкретными особенностями эксплуатации электрохимических систем, в которых они используются. Например, причиной использования именно платины или ее сплавов с другими благородными металлами в низкотемпературных электролизерах и топливных элементах с твердополимерным электролитом является то, что протонообменная мембрана имеет ярко выраженные кислотные свойства, а такие металлы, как никель, хром, кобальт и т.п., в чистом виде оказываются химически нестойкими. В то же время, при использовании топливных элементов, работающих на воздухе и водороде, бинарные системы на основе Pd могут оказаться более перспективными, чем катализаторы на основе Pt (International Scientific Journal for Alternative Energy and Ecology ISJAEE 2(46) (2007) p.118-123).

Одним из возможных путей снижения стоимости электрокатализаторов на углеродном носителе является разработка и применение многокомпонентных электрокатализаторов, которые в перспективе могут обеспечить снижение использования платины (или металлов платиновой группы) без снижения активности катализатора и уменьшения ресурса его работы. Например, одним из направлений является создание на углеродном носителе бинарных наноразмерных электрокаталитических систем на основе платины и так называемых базовых металлов: Fe, Co, Ni, Cr, а также введение добавок тугоплавких металлов (например, Mo) или замена (полная или частичная) Pt на Pd, Ru или Ir (СИ. Козлов, В.И. Фатеев Водородная энергетика: современное состояние, проблемы, перспективы. М. ООО «Газпром ВНИИГАЗ», 2009, с.338-339).

Известны различные методы синтеза многокомпонентных катализаторов на углеродной основе для различных электрохимических систем.

Известен способ химической модификации иридиевого катализатора на углеродной основе (Vulcan XC-72R) селеном с различным соотношением IrxSey (Gang Liu, Huamin Zhang. Facile Synthesis of Carbon-Supported IrxSey Chalcogenide Nanoparticles and Their Electrocatalytic Activity for the Oxygen Reduction Reaction J. Phys. Chem. С 2008, 112, 2058-2065). Для осуществления способа был применен метод полиольного синтеза с использованием H6IrCl6 и Na2 SeO3 в качестве прекурсоров с нагревом в микроволновой печи, добавлением в процессе синтеза порошка углеродного носителя, с последующей отмывкой полученного продукта в дистиллированной воде, длительной сушкой (при 60°C в течение 8 часов) и окончательной термообработкой в атмосфере водорода (при 400°C в течение 1 часа). К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также сложность предварительного прогнозирования структуры и свойств полученного катализатора при необходимости изменения его стехиометрического состава. Кроме того, в случае появления необходимости легирования иридия иными элементами, возникает необходимость существенной коррекции элементов рассматриваемого способа.

Известен способ изготовления бинарных электрокатализаторов на основе палладия на углеродном носителе для водородных топливных элементов с твердополимерным электролитом (С.А. Григорьев, Е.К. Лютикова, Е.Г. Притуленко, Д.П. Самсонов, В.Н.Фатеев «Разработка и исследования наноструктурных анодных электрокатализатов на основе палладия для водородных топливных элементов с твердополимерным электролитом» Электрохимия, 2006, том 42, № 11, с.1393-1396). При этом синтез катализаторов проводился без и с предварительной сорбцией палладия на углеродный носитель Vulcan ХС-72. Для синтеза электрокатализатора Pt0,5 Pd0,5/ Vulcan ХС-72 к 0,1М растворов H2 PtCl6 и PdCl2 добавляется суспензия углеродного носителя и 2-пропанаола. Затем смесь диспергируют в течение 10 минут и доводят pH до 8 (раствором Na2CO3 ). После этого полученная смесь добавляется в этиленгликоль при поддержании температуры 70°C. Добавляется формальдегид и поливинилпиролидон, препятствующий агломерации частиц. Затем полученная суспензия выдерживается в течение 1,5 час. при температуре 90-105°C. Смесь выдерживается 12 час, а затем проводится отмывка катализатора (4-5 раз) в бидистиллированной воде. К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также неэффективный расход платины (На активность катализатора основное влияние оказывают свойства поверхности частиц катализатора, платина же при данном способе химического синтеза бинарного катализатора находится не только в активном поверхностном слое, но во всем объеме частиц катализатора). При модификации поверхностного слоя на предварительно высаженный палладий наблюдалось агрегирование частиц, существенно ухудшающее эксплуатационные свойства катализатора.

Известен способ получения модифицированного электрохимического катализатора на углеродной основе, принятый за прототип (A. Caillard, С. Coutanceau, P. Brault, J. Mathias, J.-M. L'Eger. Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). Journal of Power Sources 162 (2006) 66-73). При этом модифицируют поверхностный слой предварительно полученного катализатора (в данном случае - платины), высаженного на углеродную пленку. Модифицируемый катализатор также как и саму модификацию производят методом плазменного напыления. Плазменное напыление проводят при низком давлении, в вакуумной установке, снабженной системой вакуумирования, устройством подачи инертного газа, и регулируемым источником потока атомов (в данном случае - плазменной системой распыления мишеней, выполненных из платины - основного элемента катализатора и рубидия - модифицирующего элемента), а также держателем углеродной подложки с катализатором. При этом пленку углеродного носителя закрепляют в держателе, вакуумируют рабочую камеру, создают остаточное низкое давление инертного газа, величина которого определяется рабочими параметрами источника потока напыляемых атомов, активируют источник напыляемых атомов материала катализатора и производят напыление катализатора на углеродный носитель (В данном конкретном случае - возбуждают плазму, распыляют материал мишени и напыляют катализатор на углеродный носитель). Затем активируют источник потока атомов или атомарных ионов модифицирующего материала и производят обработку поверхности полученного катализатора. Способ позволяет производить модификацию поверхностного слоя предварительно полученного катализатора на углеродной основе. При этом возможно широкое варьирование структуры и свойств поверхностного слоя получаемого модифицированного катализатора при малом расходе модифицирующего материала. Недостатком данного способа является ограниченность области его эффективного использования. В частности, способ малоэффективен в случае необходимости проведения модификации катализаторов предварительно высаженных на высокодисперсные углеродные материалы, такие как сажа, нанотрубки, нановолокна и т.п., обладающие высоко развитой поверхностью (при этом катализаторы могут быть предварительно получены как физическими, так и химическими методами синтеза). Способ обеспечивает проведение модификации поверхностного слоя частиц предварительно синтезированного катализатора на мелкодисперсном углеродном носителе, расположенных только по направлению потока модифицирующих атомов. Другие частицы катализатора остаются недоступными.

Техническим результатом, на который направлено изобретение, является обеспечение возможности эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Для достижения указанного технического результата предложен способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала.

При этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Отличительной особенностью изобретения является то, что для размещения катализатора, предварительно синтезированного на мелкодисперсном углеродном носителе используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Кроме того, при этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Использование в предложенном способе модификации электрохимических катализаторов на углеродном носителе установленной в держателе пористой подложки с открытой пористостью, пневматически связанной с устройством автономной подачи газа, при плавном увеличении потока инертного газа, пропускаемого через поры подложки приводит к возникновению псевдокипящего слоя в объеме расположенных на подложке частиц высокодисперсного углеродного носителя с предварительно синтезированными на них частицами катализатора. При этом, благодаря малым размерам и весу частиц высокодисперсного углеродного носителя с нанесенными на них частицами катализатора, а также разделению восходящих газовых потоков порами подложки, происходит интенсивное перемешивание углеродных частиц с приданием им дополнительного крутящего момента. В результате этого практически все модифицируемые частицы катализатора оказываются доступными для облучения потоком подающих модифицирующих атомов или атомарных ионов. Таким образом, обеспечивается возможность эффективной модификации поверхностных слоев широкого класса катализаторов, предварительно полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Проведение модификации поверхности частиц катализатора, предварительно высаженных на высокодисперсном углеродном носителе, потоком падающих атомов или атомарных ионов модифицирующего материала требует обеспечения большой плотности модифицирующих частиц, облучающих поверхность частиц модифицируемого катализатора. При этом поток модифицирующих атомов или атомарных ионов помимо частиц катализатора воздействует на поверхностные слои углеродного носителя. Облучение углеродного носителя частицами с большой энергией вызывает нарушение структуры его поверхностных слоев, что при большой плотности потока облучающих частиц приводит к частичной аморфизации углерода и ухудшению его электропроводности. Хорошая электропроводность является одним из основных требований, предъявляемых к носителю электрокатализатора. Ее снижение приводит к ухудшению эксплуатационных характеристик электрокатализатора на углеродном носителе. Ограничение энергии падающих атомов или атомарных ионов модифицирующего материала диапазоном до 70 эВ/атом позволяет существенно уменьшить или полностью исключить возможную аморфизацию поверхностных слоев углеродного носителя (зависящую от конкретных требований к виду и степени проводимой модификации катализатора). При этом возможные нарушения структуры поверхностного слоя углеродного носителя не превышают 2-3 атомных слоев углерода. Таким образом, повышается эффективность модификации поверхностных слоев широкого класса катализаторов на высокодисперсном углеродном носителе (типа сажи, нанотрубок, нановолокон и т.п.) и улучшаются эксплуатационные свойства полученного катализатора.

Способ осуществляется следующим образом. Модификацию электрохимических катализаторов на высокодисперсном углеродном носителе производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, держателем обрабатываемого катализатора с подложкой, выполненной из пористого инертного материала с открытой пористостью (например, из пористого титана, полученного методом порошковой металлургии), а также устройством подачи инертного газа, пневматически связанным с пористой подложкой. На пористой подложке послойно размещают порошок обрабатываемого электрокатализатора на углеродном носителе (Дополнительно, для исключения рассыпания обрабатываемого порошка с модифицируемым катализатором, держатель может быть снабжен выступающим буртиком). Производят откачку вакуумной камеры до значений вакуума, определяемых эксплуатационными характеристиками источника облучения (В качестве такого источника может быть использован, например, источник, выполненный на основе магнетронного, плазменного или лазерного распыления материалов, или иной источник ионов модифицирующего материала). Через пористую подложку пропускают инертный газ, плавно увеличивая подачу газа, до образования устойчивого псевдокипения слоя частиц углеродного носителя с модифицируемым катализатором. Момент возникновения псевдокипящего слоя можно наблюдать визуально через смотровое окно вакуумной камеры. В случае превышения допустимого давления в вакуумной камере производят необходимую дополнительную откачку газа (при помощи штатных средств, обеспечивающих вакуумирование рабочей камеры). Затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Дополнительно, для повышения эффективности модификации путем уменьшения влияния облучения на электропроводные свойства углеродного носителя обработку катализатора производят потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Предложенный способ модификации электрохимических катализаторов на углеродном носителе был опробован при проведении модификации платиной палладиевого электрокатализатора, предварительно синтезированного методом химического восстановления палладия из хлорида палладия с использованием этиленгликоля и добавлением формальдегида на высокодисперсном углеродном носителе Vulcan ХС-72. Целью проведения модификации являлось изучение возможности повышения эксплуатационных характеристик катализатора при малом расходе платины (~0,1 мг/см2 рабочей поверхности катода) при его использовании в качестве катодного катализатора в электролизерах с твердополимерным электролитом. При этом в качестве пористой подложки использовалась пластинка из пористого титана диаметром 70 мм, толщиной 0,9 мм, с пористостью 28% и средними размерами пор ~10 мкм, изготовленная из порошкообразного титана. Дополнительно, для исключения рассыпания сажи с катализатором подложка из пористого титана была снабжена защитным бортиком. Толщина слоя частиц катализатора на углеродном носителе составляла ~2 мм. Для образования псевдокипящего слоя углеродного носителя с модифицируемым катализатором через пористую подложку продувался аргон. При этом после вакуумирования рабочей камеры плавно увеличивали подачу аргона через пористую подложку. Момент образования псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором наблюдался визуально через смотровое стекло вакуумной камеры. Обработка псевдокипящего слоя углеродного носителя с модифицируемым катализаторов производилась потоком распыленных атомов платины (полученных методом магнетронного распыления) с энергией ~18 эВ/атом. Время обработки составляло 25 минут. Эффективность произведенной модификации палладиевого катализатора платиной проверялась в реальных условиях использования палладиевого и модифицированного Pd/Pt катализаторов на углеродном носителе (Vulcan ХС-72) в качестве катодного катализатора в ячейке электролизера с твердополимерным электролитом (Nation-117) с площадью рабочей поверхности 7 см 2 и иридиевым анодным катализатором. Оценка эффективности производилась по выходу водорода при равном напряжении на рабочей ячейке электролизера (1,75 В). Результаты проведенных сравнительных испытаний выявили 20% увеличение выхода водорода после проведения указанной модификации катодного катализатора.

Таким образом, предложенный способ модификации электрохимических катализаторов обеспечивает возможность проведения эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Класс C25B9/00 Электролизеры или узлы электролизеров;конструктивные элементы электролизеров; узлы конструктивных элементов, например узлы электродиафрагмы

электрохимическая модульная ячейка для обработки растворов электролита -  патент 2516226 (20.05.2014)
способ получения активированной воды -  патент 2515243 (10.05.2014)
электролизер для получения раствора гипохлорита натрия -  патент 2514194 (27.04.2014)
устройство для газопламенных работ -  патент 2508970 (10.03.2014)
установка для электролиза воды под давлением и способ ее эксплуатации -  патент 2508419 (27.02.2014)
способ определения максимальной производительности разложения воды и устройство для его осуществления (водородная ячейка) -  патент 2506349 (10.02.2014)
электролизер для получения водорода и кислорода из воды -  патент 2501890 (20.12.2013)
способ электрохимической обработки воды и устройство -  патент 2500625 (10.12.2013)
устройство для электрохимической обработки жидкости -  патент 2493108 (20.09.2013)
электролизер для извлечения индия из индийсодержащего расплава в виде конденсата из вакуумной печи -  патент 2490375 (20.08.2013)

Класс C25B9/04 устройства для подачи тока; соединения электродов; электрическое соединение электролизеров

электролизер для извлечения индия из индийсодержащего расплава в виде конденсата из вакуумной печи -  патент 2490375 (20.08.2013)
высокотемпературный высокопроизводительный электролизер высокого давления, работающий в аллотермическом режиме -  патент 2455396 (10.07.2012)
упругий коллектор тока для электрохимических ячеек -  патент 2455395 (10.07.2012)
упругий токораспределитель для перколяционных ячеек -  патент 2423554 (10.07.2011)
способ производства контактных полос для электролизеров -  патент 2421550 (20.06.2011)
коллектор тока для электролизера воды или топливного элемента с твердым полимерным электролитом и способ его изготовления -  патент 2388849 (10.05.2010)
электролитическая ячейка с сегментированной и монолитной конструкцией электрода -  патент 2362840 (27.07.2009)
конструкция катодных пальцев хлоро-щелочных диафрагменных электролизеров -  патент 2317352 (20.02.2008)
эластичный коллектор тока -  патент 2304638 (20.08.2007)
механическое присоединение проводника электрического тока к инертным анодам -  патент 2299276 (20.05.2007)

Класс C25B9/10 включающие ионообменную мембрану, в которою вставлен или на которой закреплен электродный материал

Класс B01J21/18 углерод

способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола -  патент 2505519 (27.01.2014)
способ получения катализатора -  патент 2498852 (20.11.2013)
способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора -  патент 2497587 (10.11.2013)
состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья -  патент 2492922 (20.09.2013)
способ электрохимического получения катализатора pt-nio/c -  патент 2486958 (10.07.2013)
способ получения углеродного носителя для катализаторов -  патент 2484899 (20.06.2013)

Класс B01J37/30 ионный обмен

катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
лакунарный гетерополианион структуры кеггина на основе вольфрама для гидрокрекинга -  патент 2509729 (20.03.2014)
разработка технологии производства катализаторов алкилирования -  патент 2505357 (27.01.2014)
катализатор, способ его получения и способ трансалкилирования бензола диэтилбензолами с его использованием -  патент 2478429 (10.04.2013)
микросферический катализатор для крекинга нефтяных фракций и способ его приготовления -  патент 2473385 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)
микросферический катализатор для снижения содержания серы в бензине крекинга и способ его приготовления -  патент 2472586 (20.01.2013)
катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда -  патент 2470707 (27.12.2012)
способ получения титанатного фотокатализатора, активного в видимой области спектра -  патент 2466791 (20.11.2012)
катализатор гидроизомеризации, способ его получения, способ депарафинизации углеводородного масла и способ получения базового смазочного масла -  патент 2465959 (10.11.2012)

Класс B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний

способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
нагруженный металлом катализатор и способ его приготовления -  патент 2514438 (27.04.2014)
способ активации катализаторов гидроочистки дизельного топлива -  патент 2500475 (10.12.2013)
способ получения оксидных каталитически активных слоев на поверхности, выполненной из вентильного металла или его сплава -  патент 2500474 (10.12.2013)
способ получения диоксида титана -  патент 2494045 (27.09.2013)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2492923 (20.09.2013)
способ получения катализатора гидроочистки дизельного топлива -  патент 2491123 (27.08.2013)
способ электрохимического получения катализатора pt-nio/c -  патент 2486958 (10.07.2013)
способ получения катализатора для орто-пара конверсии протия -  патент 2481891 (20.05.2013)

Класс B01J23/40 металлов группы платины

объединенный способ каталитичеcкого крекинга в псевдоожиженном слое катализатора для получения высококачественных углеводородных смесей в качестве топлива -  патент 2518119 (10.06.2014)
способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора -  патент 2497587 (10.11.2013)
способ приготовления катализатора для получения синтез-газа, катализатор, приготовленный по этому способу, и способ получения синтез-газа с его использованием -  патент 2491118 (27.08.2013)
комплексный способ крекинга с псевдоожиженным катализатором для получения смесей углеводородов, обладающих высоким топливным качеством -  патент 2481388 (10.05.2013)
гидрирование иминов -  патент 2476422 (27.02.2013)
способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления -  патент 2473664 (27.01.2013)
катализатор гидрирования ароматических углеводородов и способ получения и применения такого катализатора -  патент 2469789 (20.12.2012)
способ получения катализатора на углеродном носителе -  патент 2467798 (27.11.2012)
способ получения дициклопентена (трицикло-[5.2.1.02,6]децена-3) -  патент 2459793 (27.08.2012)
катализатор и способ получения синтез-газа -  патент 2453366 (20.06.2012)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх