рекомбинантная плазмидная днк ppins16, кодирующая гибридный полипептид, содержащий проинсулин человека, рекомбинантная плазмидная днк ppins25, кодирующая гибридный полипептид, содержащий проинсулин человека, и штамм бактерий escherichia coli - продуцент гибридного полипептида, содержащего проинсулин человека
Классы МПК: | C12N15/17 инсулины C12N1/21 модифицированные введением чужеродного генетического материала |
Автор(ы): | Коробко В.Г., Болдырева Е.Ф., Шингарова Л.Н., Мирошников А.И., Гавриков В.Г., Степанов А.В., Калинин Ю.Т. |
Патентообладатель(и): | Институт биоорганической химии им.М.М.Шемякина и Ю.А.Овчинникова РАН, Российское акционерное общество открытого типа "Биопрепарат" |
Приоритеты: |
подача заявки:
1999-05-18 публикация патента:
27.12.1999 |
Изобретение относится к биотехнологии, в частности к генетической инженерии. Может быть использовано для получения рекомбинатного проинсулина человека. Рекомбинантная плазмидная ДНК pPINS16 содержит искусственный ген, кодирующий гибридный полипептид, состоящий из одного IgG-связывающего домена белка А из S. aureus, пептидного линкера His6GlySerArg и проинсулина человека, тандем промоторов триптофанового оперона Е.соli и синтетический усилитель трансляции гена 10 бактериофага Т7. Рекомбинантная плазмидная ДНК pPINS16 обеспечивает в клетках E.coli SG20050 конститутивный биосинтез гибридного полипептида на уровне 25-30% суммарного клеточного белка. Рекомбинантная плазмидная ДНК pPINS25 содержит искусственный ген, кодирующий гибридный полипептид, состоящий из одного IgG-связывающего домена белка А из S. aureus, пептидного линкера His6GlySerArg и проинсулина человека, гибридный trc-промотор, тандем двух терминаторов рибосомного оперона E.coli и мутантный ген, кодирующий термочувствительный lac-репрессор. Штамм Escherichia coli SG20050/pPINS25-продуцент гибридного полипептида, содержащего проинсулин человека. Изобретение позволяет индуцировать биосинтез целевого гибридного полипептида сдвигом температуры культивирования штамма-продуцента с 30 до 42°С. Уровень биосинтеза составляет не ниже 25% суммарного клеточного белка. 3 с.п.ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Рекомбинантная плазмидная ДНК PINS16, кодирующая гибридный полипептид, содержащий проинсулин человека, в котором последовательность домена В стафилококкового белка А соединена через пептидный линкер His6GlySerArg с аминокислотной последовательностью проинсулина человека, с молекулярной массой 2,82 МДа, состоящая из ClaI/HindIII-фрагмента плазмиды pGGF8, включающего тандем двух trp-промоторов, ген




Описание изобретения к патенту
Изобретение относится к области генетической инженерии и медицины и может быть использовано для создания лекарственных препаратов для лечения инсулинзависимого сахарного диабета. Инсулин - пептидный гормон поджелудочной железы - синтезируется специализированными клетками, называемыми островками Лангерганса, в виде предшественника - препроинсулина, состоящего из 109 аминокислотных остатков. В процессе биосинтеза в результате отщепления сигнального пептида из 23 аминокислот высвобождается проинсулин. В дальнейшем проинсулин подвергается дальнейшему процессингу, приводящему к образованию собственно инсулина в результате специфического "выщепления" 35 аминокислот C-пептида. Зрелый биологически активный инсулин состоит из двух цепей, соединенных двумя дисульфидными связями. Цепь A содержит 21, а цепь B - 30 аминокислотных остатков. Производство рекомбинантного инсулина человека основано на использовании гена проинсулина человека, полученного либо синтезом кДНК на матрице мРНК, выделенной из поджелудочной железы человека [1, 2], либо химико-ферментативным синтезом [3, 4]. При этом широко используется методология экспрессии гена проинсулина человека в клетках E.coli в составе гибридных белков в виде нерастворимых "телец включения". В качестве лидерных последовательностей, защищающих рекомбинантный белок от протеолитической деградации, использовали гомоолигопептиды [5] , бычий протимозин [6], глутатион-S-трансферазу [7], C-пептид проинсулина [8] и др. Отщепление инсулина от лидерного пептида достигается обработкой бромцианом по остатку метионина [9, 10]. Однако перечисленные полипептидные конструкции в настоящее время не используются вследствие низкой технологичности и необходимости использования высокотоксичного реагента на стадии расщепления белка-предшественника. Наиболее близким по технической сущности к предлагаемому изобретению является рекомбинантная плазмидная ДНК pTrpZZ-R-proinsulin [11], кодирующая гибридный белок массой около 27 кДа, в котором тандем двух IgG-связывающих доменов соединен через остаток аргинина с аминокислотной последовательностью проинсулина человека. Биосинтез гибридного полипептида в клетках штамма-продуцента контролируется индуцибельным tac-промотором. Однако необходимость индукции биосинтеза гибридного белка изопропилтио-




и
TCTCTCATCCGCCAAAA (II). В структуре праймера I подчеркиванием выделен сайт рестриктазы ClaI. Продукт амплификации обрабатывали рестрикционными эндонуклеазами ClaI и HindIII, и гидролизат после очистки электрофорезом в 1% геле легкоплавкой агарозы лигировали с вектором, полученным гидролизом плазмиды pGGF8 рестриктазами ClaI и HindIII. В результате получили плазмидную ДНК pPINS16, кодирующую гибридный полипептид, содержащий проинсулин человека. Плазмида pPINS16 детерминирует в клетках E. coli SG20050 конститутивный биосинтез гибридного белка, содержание которого составляет 25-30% суммарного клеточного белка. Рекомбинантная плазмидная ДНК pPINS16 кодирует гибридный полипептид с аминокислотной последовательностью проинсулина человека и характеризуется следующими признаками:
имеет молекулярную массу 2,82 МДа (4,274 т.п.о.);
кодирует гибридный белок, в котором последовательность IgG-связывающего домена B стафолококкового белка A с C-концевым гексагистидиновым линкером соединена через трипептид GlySerArg с аминокислотной последовательностью проинсулина человека;
состоит из: ClaI/HindIII-фрагмента плазмиды pGGF8, содержащей тандем двух trp-промоторов, ген


содержит: тандем двух trp-промоторов транскрипции, синтетический усилитель трансляции гена X бактериофага T7, искусственный ген, кодирующий гибридный полипептид, в котором последовательность домена B стафилококкового белка A с C-концевым гексагистидиновым линкером соединена через трипептид GlySerArg с аминокислотной последовательностью проинсулина человека; терминатор транскрипции бактериофага


EcoRI - 278, ClaI - 384, KpnI - 290, NcoI - 599 и 1677, BamHI - 603 и 1045, HindIII - 874. Преимуществом предложенной плазмидной конструкции является то, что содержащийся в ней гибридный ген экспрессируется конститутивно, что не требует стадии химической индукции и значительно удешевляет и упрощает технологию культивирования рекомбинантного бактериального штамма B то же время необходимость длительного культивирования штамма-продуцента на основе плазмиды pPINS16 в значительной степени снижает качество гибридного полипептида в "тельцах включения". Отмеченный недостаток устраняют конструированием рекомбинантной плазмидной ДНК, детерминирующей термоиндуцибельную экспрессию искусственного гена, кодирующего гибридный полипептид, состоящий из одного IgG-связывающего домена B белка A из S. aureus, пептидного линкера His6GlySerArg и проинсулина человека. Конструируют рекомбинантную плазмидную ДНК pPINS25, в которой экспрессия гибридного гена, кодирующего биотехнологический предшественник инсулина человека, контролируется сдвигом температуры культивирования плазмидосодержащего штамма. Температурная индукция целевого гена в плазмиде pPINS25 обеспечивается гибридным промотором Ptrc и наличием гена, кодирующего термочувствительный lac-репрессор. Для конструирования плазмиды pPINS25 на первом этапе провели клонирование ClaI/HindIII-фрагмента плазмиды pPINS16, содержащего искусственный ген, кодирующий гибридный белок с последовательностью проинсулина человека, в плазмиду pTrcTEGFa [14]. В результате получили плазмиду pTrcPINS, в которой экспрессия целевого гибридного гена находится под контролем химерного trc-промотора и синтетического участка инициации трансляции с энхансером. Наличие в этой плазмиде Iq-аллельного варианта гена репрессора позволяет использовать эту плазмиду для индуцибельной экспрессии гибридного гена в любом штамме кишечной палочки. При этом экспрессия может иметь место только при индукции IPTG. Для получения термоиндуцибельного варианта проводили сайт направленный мутагенез. В качестве мишени для мутации был выбран остаток Gly187, так как замена его на серин приводит к фенотипу ts гена lac-репрессора [15, 16]. Мутагенез проводили на матрице плазмидной ДНК pTrcPINS с помощью двухстадийной полимеразной цепной реакции, при этом использовали уникальные для этой плазмиды сайты рестриктаз BstEl и EcoRI. Для мутагенеза были синтезированы два мутагенизирующих праймера:

и

(подчеркнуты измененные триплеты) и два якорных праймера: ACACCCATCAACAGTATTAT (V) и TACCGAGCTCGAATTCCAT (VI). Чтобы реализовать аминокислотную замену Gly187Ser на первом этапе проводили реакцию на матрице плазмиды pTrcPINS с мутагенизирующим праймером (III) и якорным праймером (VI). Параллельно проводили полимеразную цепную реакцию (ПЦР) с праймерами (IV) и (V). Продукты ПЦР величиной 850 и 120 пар оснований (п. о. ) отделяли от праймеров, отжигали и проводили новый цикл ПЦР в присутствии только якорных праймеров (V) и (VI). Полученный таким образом фрагмент величиной 950 п.о. гидролизовали рестриктазами BstEl и EcoRI, и образовавшийся фрагмент клонировали по тем же сайтам в плазмиду pTrcPINS. В результате получили плазмиду pPINS25, содержащую мутантный ген lac-репрессора и искусственный ген, кодирующий гибридный белок с проинсулином человека под контролем trc-промотора. Рекомбинантная плазмидная ДНК pPINS25 кодирует гибридный полипептид с аминокислотной последовательностью проинсулина человека и характеризуется следующими признаками:
имеет молекулярную массу 3,12 МДа (4,721 т.п.о.);
кодирует гибридный белок, в котором последовательность IgG-связывающего домена B стафолококкового белка A с C-концевым гексагистидиновым линкером соединена через трипептид GlySerArg с аминокислотной последовательностью проинсулина человека;
состоит из: ClaI/HindIII-фрагмента плазмиды pTrcTEGFa, содержащего trc-промотор, ген

содержит: химерный trc-промотор транскрипции, синтетический усилитель трансляции гена X бактериофага T7, искусственный ген, кодирующий гибридный полипептид, в котором последовательность домена B стафилококкового белка A с C-концевым гексагистидиновым линкером соединена через трипептид GlySerArg с аминокислотной последовательностью проинсулина человека; терминатор транскрипции рибосомного оперона E. coli, Iq-вариант гена lac-репрессора с ts-мутацией Gly187Ser; в качестве генетического маркера ген

EcoRI - 270, KpnI - 282, XbaI - 340, ClaI - 376, NcoI - 265 и 591, BamHI - 595, PstI - 712 и 787, HindIII - 866, BstEI - 4131, EcoRV - 4398. Для получения штамма-продуцента гибридного полипептида с проинсулином человека трансформируют компетентные клетки Escherichia coli SG20050 рекомбинантной плазмидной ДНК pPINS25. Полученный штамм Escherichia coli SG20050/pPINS25 характеризуется следующими признаками. Морфологические признаки. Клетки мелкие укороченной палочковидной формы, грамотрицательные, неспороносные, 1 х 3,5 мкм, подвижные. Культуральные признаки. При росте на агаризованной среде LB колонии круглые, гладкие, полупрозрачные, блестящие, серые. Край ровный, диаметр колоний 1-3 мм, консистенция пастообразная. Рост в жидких средах (LB, минимальная среда с глюкозой) характеризуется ровным помутнением, осадок легко седиментирует. Физико-биохимические признаки. Клетки растут при температуре 4 - 42oC, оптимум pH 6,8-7,6. В качестве источника азота используют как минеральные соли аммония, так и органические соединения: аминокислоты, пептон, триптон, дрожжевой экстракт. В качестве источника углерода при росте на минимальной среде используют глицерин, углеводы, аминокислоты. Устойчивость к антибиотикам. Клетки штамма-продуцента проявляют устойчивость к ампициллину (до 300 мг/мл), обусловленную наличием в плазмиде гена

1. Bell G. 1., Swain W. F., Pictet R., Cordell B., Goodman H. M., Rutter W. J. // Nature, 1979, v. 282, p. 525 - 527. 2. Sures I., Goeddel D. V., Gray A., Ulrich A. // Science, 1980, v. 208, p. 57 - 59. 3. Williams D. С., Van Frank R. M., Murth M. L., Burnett J. P. // Science, 1982, v. 215, p. 687 - 689. 4. Ovchinnikov Y. A. , Efimov V. A., Ivanova I. N., Reverdatto S. V., Skiba N. P., Chakhmakhcheva O. G. // Gene, 1984, v. 31, p. 65 - 68. 5. Sung W. L., Yao F.L., Zanab D. M., Narang S. A. // Proc. Natl. Acad. Sci. USA, 1986, v. 83, p. 561 - 565. 6. Tang J., Xue Y., Fan X., Fu Y. // Clin J. Biotechnol., 1993, v. 9, p. 71 - 78. 7. Berg H. , Walter M., Mauch L., Seissler J., Northemann W. J. // Immunol. Methods, 1993, v. 164, p. 221 - 231. 8. Wei G. , Hu M. H., Tang L. G. // Biochem. Mol. Biol. Int., 1995, v. 35, p. 37 - 46. 9. McGregor W. С. // Ann. N. Y. Acad. Sci., 1983, v. 413, p. 231 - 237. 10. Cowley D. J., Mackin R.B. // FEBS Lett., 1997, v. 402, p. 124 - 130. 11. Johansson P., Nilsson L., Samuelsson E., Moks T., Stahl S., Uhlen M. // Eur. J. Biochem., 1996, v. 236, p. 656 - 661. 12. Патент РФ N 96113021/13. Бюлл. N 13, 20.06.98. 13. Rosenberg M., Court D., Shimatake H., Brady C., Wulff D. // The operon / Eds. Miller J.H., Reznikoff W.S. Cold Spring Harbor Laboratory. 1980. P. 345 - 371. 14. Шингарова Л. Н., Кашьяп С.К., Петровская Л.Е., Петренко Л.А., Пустошилова Н.М., Синичкина С.А., Коробко В.Г. // Биотехнология, 1998, N 6, с. 24 - 35. 15. Bukrinsky MI, Barsov EV, Shilov AA // Gene, 1988, v. 70, p. 415 - 417. 16. Yabuta M., Onai-Miura S., Ohsuye K. // J. Biotechnol, 1995, v. 39, p. 67 - 73. 17. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. // J. Mol. Biol. , 1981, v. 148, p. 107 - 127. 18. Hanahan J. // J. Mol. Biol., 1983, v. 227, p. 557 - 580. 19. Чувпило С. А, Кравченко В. В. // Биоорган, химия, 1983, т. 9, с. 1634 - 1637. 20. Laemmli U.K. // Nature, 1970, v. 227, p. 680 - 687.
Класс C12N1/21 модифицированные введением чужеродного генетического материала