Жидкофазное выращивание эпитаксиальных слоев – C30B 19/00

МПКРаздел CC30C30BC30B 19/00
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C30 Выращивание кристаллов
C30B Выращивание монокристаллов; направленная кристаллизация эвтектик или направленное расслаивание эвтектоидов; очистка материалов зонной плавкой; получение гомогенного поликристаллического материала с определенной структурой; монокристаллы или гомогенный поликристаллический материал с определенной структурой; последующая обработка монокристаллов или гомогенного поликристаллического материала с определенной структурой; устройства для вышеуказанных целей
C30B 19/00 Жидкофазное выращивание эпитаксиальных слоев

C30B 19/02 .с использованием расплавленных растворителей, например флюсов
C30B 19/04 ..с растворителем, являющимся компонентом кристаллической композиции
C30B 19/06 .реакционные камеры; лодочки для поддерживания расплава; держатели подложек
C30B 19/08 .нагревание реакционной камеры или подложки
C30B 19/10 .управление или регулирование
управление или регулирование вообще  G 05
C30B 19/12 .характеризуемое подложкой

Патенты в данной категории

МАГНИТООПТИЧЕСКИЙ МАТЕРИАЛ

Изобретение относится к области магнитной микроэлектроники, в частности к прикладной магнитооптике, и может быть использовано для записи информации как в цифровом, так и в аналоговом режимах. Магнитооптический материал представляет собой эпитаксиальную монокристаллическую пленку феррита-граната состава (YBi) 3(FeGa)5O12, нарощенную на подложке немагнитного граната с высоким значением параметра решетки , при этом эпитаксиальная пленка содержит 0,1-0,4 формульных единиц ионов Mg2+. Подложка немагнитного граната может быть выполнена из (GdCa)3(GaMgZr)5O 12, или Ca3(NbLi)2Ga3O 12, или Ca3(NbMg)2Ga3O 12, или Ca3(NbZr)2Ga3O 12. Предложенный материал имеет магнитооптическую добротность 56-60 град/дБ при =0,8 мкм, 350-380 град/дБ при =1,3 мкм, коэрцитивную силу порядка 2,5-15,3 Э и позволяет получать методом термомагнитной записи высококонтрастные изображения. 1 з.п. ф-лы, 2 табл., 3 ил., 4 пр.

2522594
выдан:
опубликован: 20.07.2014
УСТРОЙСТВО ДЛЯ ЖИДКОФАЗНОЙ ЭПИТАКСИИ МНОГОСЛОЙНЫХ ПОЛУПРОВОДНИКОВЫХ СТРУКТУР

Изобретение относится к электронной технике, в частности к устройствам для получения многослойных полупроводниковых гетероструктур. Устройство содержит корпус 1 с крышкой 2, контейнер 3 с емкостями для исходных расплавов, снабженный поршнями 4, многосекционный держатель 14 подложек, камеру роста 5 и каналы для подачи и вывода расплавов. Контейнер 3 с емкостями расположен под многосекционным держателем 14 подложек. Крышка 2 снабжена выступами для удаления излишков расплава. Устройство содержит дополнительные емкости 7 для части используемых расплавов, установленные над контейнером 3, каждая из которых снабжена крышкой 8 с грузом и отверстием с возможностью слива расплава в располагающийся ниже основной контейнер 3. Технический результат изобретения состоит в обеспечении подавления нежелательного взаимодействия примесей в разных ростовых расплавах между собой через газовую фазу, что приводит к повышению технических или электрофизических характеристик получаемых структур. 1 з.п. ф-лы, 2 ил., 2 пр.

2515316
выдан:
опубликован: 10.05.2014
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ АРСЕНИДА ГАЛЛИЯ

Изобретение относится к электронной технике, а именно - к материалам для изготовления полупроводниковых приборов с использованием эпитаксиальных слоев арсенида галлия. Сущность изобретения заключается в использовании для выращивания эпитаксиальных слоев GaAs подложек из интерметаллических соединений, имеющих строго стехиометрический состав, а именно из лантанидов галлия GaLa3 и Ga3La5, цирконидов галлия Ga3Zr и Ga3Zr5, цирконида алюминия Al3Zr, церида алюминия CeAl2, бериллида палладия BePd, лантанида магния MgLa, лантанида алюминия Al 2La, станнида платины Pt3Sn, лантанида индия InLa, цирконида олова SnZr4, плюмбида платины Pt 3Pb. Предлагаемое изобретение позволяет существенно улучшить электрофизические параметры арсенида галлия за счет исключения диффузии компонентов подложки в эпитаксиальный слой. 1 табл.

2489533
выдан:
опубликован: 10.08.2013
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ НИТРИДА ГАЛЛИЯ

Изобретение относится к технологии выращивания полупроводниковых материалов и может быть использовано для получения монокристаллов нитрида галлия, а также твердых растворов на его основе. Способ включает нагрев и выдержку при заданной температуре либо нагрев и медленное охлаждение от заданной температуры в контейнере при поддержании градиента температуры между верхней и нижней частями контейнера под давлением азотсодержащего газа шихты, содержащей источник галлия и компоненты флюса. Флюс в качестве основных компонентов содержит цианиды, или цианамиды, или дицианамиды щелочных и/или щелочноземельных металлов и модифицирующие добавки, повышающие растворимость нитрида галлия и/или увеличивающие скорость роста и/или позволяющие управлять физическими свойствами получаемых кристаллов. За счет состава флюса, химического инертного по отношению к материалу контейнера, снижается скорость коррозии последнего, при этом также повышается качество получаемых монокристаллов. 15 з.п. ф-лы, 2 табл.

2477766
выдан:
опубликован: 20.03.2013
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ НИТРИДА ГАЛЛИЯ

Изобретение относится к электронной технике, а именно к технологии материалов для создания устройств отображения и обработки информации. В качестве материала подложек для выращивания эпитаксиальных слоев нитрида галлия предложен ряд соединений - монокристаллы интерметаллидов, выбранные из группы, включающей силицид марганца (MnSi), силицид палладия (Pd2Si), станнат марганца (Mn3Sn), станнат железа (Fe3 Sn), фосфид ванадия (VP), цирконид алюминия (Zr3Al) с умеренными температурами плавления. Преимущества этого класса соединений в сравнении с известными заключаются в повышении качества выращиваемых на подложках из указанных соединений пленок нитрида галлия.

2369669
выдан:
опубликован: 10.10.2009
ПОДЛОЖКА ДЛЯ ЭПИТАКСИИ (ВАРИАНТЫ)

Изобретение относится к объемному монокристаллу нитрида, в частности предназначенному для использования в качестве подложки для эпитаксии, пригодной для использования в оптоэлектронике для производства оптоэлектронных полупроводниковых устройств на основе нитридов, в частности для изготовления полупроводниковых лазерных диодов и лазерных устройств. В изобретении раскрыт объемный монокристалл нитрида, который представляет собой монокристалл нитрида галлия, и его поперечное сечение в плоскости, перпендикулярной с-оси гексагональной кристаллической решетки нитрида галлия, имеет площадь поверхности больше 100 мм2 , его толщина больше 1,0 мкм и его плотность поверхностных дислокаций в плоскости С меньше 106 /см 2, в то время как его объем достаточен для получения, по меньшей мере, одной, пригодной для дальнейшей обработки пластины с плоскостью А или плоскостью М, имеющей площадь поверхности, по меньшей мере, 100 мм2. В более общем случае изобретение раскрывает объемный монокристалл нитрида, который представляет собой монокристалл нитрида, содержащего галлий, и его поперечное сечение в плоскости, перпендикулярной с-оси гексагональной кристаллической решетки нитрида, содержащего галлий, имеет площадь поверхности больше 100 мм 2, его толщина больше 1,0 мкм и его плотность поверхностных дислокаций меньше 106 /см 2. Вышеуказанные объемные монокристаллы нитрида, содержащего галлий, кристаллизуются с использованием способа, включающего растворение исходного материала, содержащего галлий, в сверхкритическом растворителе и кристаллизацию нитрида галлия на поверхности затравочного кристалла, при температуре выше и/или давлении ниже, чем используют в процессе растворения. Полученные объемные монокристаллы имеют плотность дислокации менее 106 /см 2, что говорит об их высоком качестве. 5 н. и 43 з.п. ф-лы, 20 ил.

(56) (продолжение):

CLASS="b560m"Crystal growth of gallium nitride in supercritical ammonia. "Journal of Crystal Growth", v.222, Issue 3, January 2001, p.431-434.

2312176
выдан:
опубликован: 10.12.2007
ПРЕОБРАЗОВАТЕЛЬ ВЫСОКОЭНЕРГЕТИЧЕСКИХ ЧАСТИЦ И СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ

Изобретение относится к области выращивания эпитаксиальных монокристаллических пленок для измерения рентгеновского излучения, гамма-излучения, корпускулярного и космического излучений и промышленно применимо при изготовлении детекторов ядерных частиц, нейтронов, - и -частиц, -квантов, сцинтилляционных и рентгеновских экранов. Технический результат изобретения: повышение, эффективности преобразования высокоэнергетических частиц в излучение люминесценции видимого диапазона. Сущность: преобразователь высокоэнергетических частиц содержит монокристаллическую подложку 1, эпитаксиальную пленку 2, а также дополнительные пленки 3, 4 и 5. Эпитаксиальная пленка содержит ионы свинца и/или висмута, причем эпитаксиальная пленка содержит также, по меньшей мере, и один химический элемент из группы Се, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Ti, V, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sn и Sb. Способ получения пленки предполагает размещение изоморфной монокристаллической подложки в переохлажденный раствор-расплав, по меньшей мере, два раза на время от 0,1 с до 100 мин. Шихта для приготовления раствора-расплава содержит PbO и/или Bi2 O3, В2О 3 и, по меньшей мере, один кристаллообразующий оксид. 2 н. и 17 з.п. ф-лы, 1 ил.

2302015
выдан:
опубликован: 27.06.2007
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ АРСЕНИДА ГАЛЛИЯ

Изобретение относится к получению монокристаллических материалов и пленок и может использоваться в технологии полупроводниковых материалов для изготовления солнечных элементов, интегральных схем, твердотельных СВЧ-приборов. В качестве материалов подложек для выращивания пленок GaAs ориентации (100) используются монокристаллы интерметаллических соединений, выполненные из одного из бинарных сплавов: NiAl, CoAl, AlTi, NiGa. Изобретение позволяет выращивать зеркальные эпитаксиальные пленки арсенида галлия в более широком диапазоне температур осаждения и пересыщения, обеспечивает упрощение технологии изготовления приборов и снижает их стоимость. 2 з.п. ф-лы.

2267565
выдан:
опубликован: 10.01.2006
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК И СЛОЕВ НИТРИДА ГАЛЛИЯ

Изобретение относится к электронной технике, конкретно к технологии материалов для создания устройств отображения и обработки информации. Сущность изобретения: предложен класс материалов - моносилициды переходных металлов IV-периода и твердые растворы на их основе - в качестве материала подложек для роста эпитаксиальных слоев нитридов галлия. Преимущества этого класса соединения заключаются в возможности выращивания больших и совершенных кристаллов при умеренных температурах существующими методами и в лучшем согласовании их кристаллических решеток с растущими на них эпитаксиальными слоями нитрида галлия.
2209861
выдан:
опубликован: 10.08.2003
ПОДЛОЖКА ДЛЯ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ АРСЕНИДА ГАЛЛИЯ

Изобретение относится к электронной технике, конкретно к технологии материалов, предназначенных для создании приборов и устройств обработки и передачи информации. Сущность изобретения: в качестве материала подложек для выращивания эпитаксиальных слоев арсенида галлия предложено использовать антимониды металлов четвертого периода периодической системы элементов, что существенно упрощает технологию выращивания и снижает цену подложек и приборов, изготовленных на их основе.
2209260
выдан:
опубликован: 27.07.2003
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ КАРБИДА КРЕМНИЯ (ВАРИАНТЫ), СТРУКТУРА КАРБИДА КРЕМНИЯ (ВАРИАНТЫ)

Использование: изобретение относится к способу попучения эпитаксиальных слоев карбида кремния, которые являются по существу свободными от дефектов в виде микротрубочек. Способ включает рост эпитаксиального слоя карбида кремния на подложке из карбида кремния путем жидкофазной эпитаксии из расплава карбида кремния в кремнии и в элементе, который увеличивает растворимость карбида кремния в расплаве. Атомный процент этого элемента доминирует над атомным процентом кремния в расплаве. Дефекты в виде микротрубочек, распространяемые подложкой в эпитаксиальный слой, закрываются с помощью продолжения роста эпитаксиального споя при соответствующих условиях до тех пор, пока эпитаксиальный слой не будет иметь толщину, при которой дефекты в виде микротрубочек, присутствующие в подложке, не будут по существу далее воспроизводиться в эпитаксиальном слое. Изобретение позволяет существенно уменьшить число дефектов в виде микротрубочек в эпитаксиальном слое. 5 с. и 10 з.п. ф-лы, 6 ил.
2142027
выдан:
опубликован: 27.11.1999
СПОСОБ ЗОННОЙ ПЕРЕКРИСТАЛЛИЗАЦИИ ГРАДИЕНТОМ ТЕМПЕРАТУРЫ КРЕМНИЕВЫХ ПЛАСТИН НА ОСНОВЕ АЛЮМИНИЕВЫХ ЗОН

Использование: изобретение относится к полупроводниковой технологии и может найти применение при изготовлении интегральных схем и полупроводниковых приборов. Сущность изобретения: способ включает перекристаллизацию в нестационарных тепловых полях двух - пяти градиентных нагревателей путем последовательного перемещения пластин кремния от одного нагревателя к другому без их выключения, причем первые один - два нагревателя поднимают температуру до 700 - 1200oС, а остальные - снижают до 1000oС, смену пластин проводят на смежных нагревателях при равенстве их температур, восстановление температуры нагревателей осуществляют в отсутствие пластин кремния, продолжительность цикла работы каждого нагревателя определяют по математической зависимости. 2 табл., 5 ил.
2107117
выдан:
опубликован: 20.03.1998
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ОКСИДНЫХ ПЛЕНОК ПУТЕМ ЖИДКОФАЗНОЙ ЭПИТАКСИИ

Использование: в оптических устройствах. Сущность изобретения: устройство включает изолирующую центральную трубу со средством внешнего высокочастотного индукционного нагрева, электропроводящий цилиндрический элемент конструкции с отверстиями на обоих концах, расположенных в центральной трубе, а также тигель, изготовленный из электропроводящего материала и коаксиально расположенный в цилиндрическом элементе конструкции. Изобретение позволяет получать монокристаллические оксидные пленки хорошего качества. 1 з. п. ф-лы, 1 ил.
2089679
выдан:
опубликован: 10.09.1997
МАТЕРИАЛ, СТОЙКИЙ К ПОТОКАМ -КВАНТОВ

Изобретение относится к магнитной микроэлектронике, радиационной физике твердого тела и может быть использовано при конструировании элементов памяти и логики на цилиндрических магнитных доменах (ЦМД), применяющихся в полях g-излучений. Поставленная цель достигается тем, что в качестве материала для изготовления элементов памяти и логики на ЦМД, работающих в условиях интенсивного облучения g-квантами, используются эпитаксиальные пленки ферритов - гранатов (Ca, Ge) - системы, выращенные на подложках Gd3Ga5O12 методом жидкофазной эпитаксии из стехиометрического раствора - расплава на основе PbO-B2O3. 4 табл., 2 ил.
2072005
выдан:
опубликован: 20.01.1997
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОСТРУКТУР НА ОСНОВЕ ПОЛУПРОВОДНИКОВЫХ СОЕДИНЕНИЙ

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано для создания оптоэлектронных приборов, работающих в спектральном диапазоне 0,59-0,87 мкм. Изобретение обеспечивает повышение качества гетерограницы, расширение спектрального диапазона материала от 0,59 до 0,87 мкм и получение однородного по составу эпитаксиального слоя. Способ включает осаждение эпитаксиального слоя на подложку GaAs из раствора-расплава с подпиткой его из кристалла-источника, следующего состава ,ат. %: Аl - 1,0-17,0, Р - 0,5-41,0, As - 9,0- 49,5, Ga - остальное. Состав раствора-расплава, ат. %: Al - 0,0019 -0,0560; P-0,0130-2,0500; As - 3,580-22,300; In - 0,8660-92,4065; Ga - остальное. Процесс ведут в поле с температурным градиентом между источником и подложкой. Получены слои толщиной 62-96 мкм однородные по составу. 2 табл.
2064541
выдан:
опубликован: 27.07.1996
ЭПИТАКСИАЛЬНАЯ ФЕРРИТ-ГРАНАТОВАЯ СТРУКТУРА

Использование: при разработке и изготовлении малогабаритных планарных СВЧ приборов на поверхностных магнитостатических волнах (ПМСВ). Сущность изобретения: эпитаксиальная феррит-гранатовая структура (ЭФГС), содержащая подложку из гадолиний-галлиевого граната (ГГГ) ориентации (100), включает пленку на основе железо-иттриевого граната (ЖИГ) с содержанием Ga, L a и/или Se и разориентирована от плоскости (100) к плоскости (110) на угол 0 - 15o. Предлагаемая структура обеспечивает термостабильность частот возбуждения ПМСВ в интервале от -70 до +85oС. 2 ил.
2061112
выдан:
опубликован: 27.05.1996
СПОСОБ ТЕРМОСТАБИЛИЗАЦИИ РАБОЧЕЙ ЧАСТОТЫ УСТРОЙСТВ НА ПОВЕРХНОСТНЫХ МАГНИТОСТАТИЧЕСКИХ ВОЛНАХ

Использование: при конструировании и разработке устройств аналоговой обработки информации СВЧ диапазона. Сущность изобретения: кристаллографическая ориентация плоскости пленки ЖИГ, используемой в качестве волноведущего элемента, разориентирована на 0 15° от плоскостей (100) или (210) или (110) или (211), в качестве постоянного магнита используют магнит из сплава с неотрицательным температурным коэффициентом напряженности магнитного поля, затем магнит и пленку соединяют, при этом ПМСВ направляют под таким углом и выбранной в плоскости пленки кристаллографической оси, для которого температурный коэффициент частоты ПМСВ в пленке F относится к температурному коэффициенту напряженности магнитного поля H, как F/H= H/F (dF/dН), где Н напряженность магнитного поля; F частота ПМСВ. Предлагаемый способ позволяют обеспечить термостабильность рабочей частоты устройства аналоговой обработки СВЧ сигналов в более расширенном интервале температур (от -60 до +85°С). 1 з. п. ф-лы, 3 ил. 1 табл.
2051209
выдан:
опубликован: 27.12.1995
СПОСОБ ПОЛУЧЕНИЯ МАГНИТООПТИЧЕСКИХ СТРУКТУР

Использование: в магнитооптике при создании управляемых транспорантов, изоляторов и т.д. Сущность изобретения: структуру получают путем жидкофазного осаждения висмутсодержащей эпитаксиальной пленки из переохлажденного раствора-расплава на подложку из кальций-ниобий-галлиевого граната. Предварительно на подложку напыляют слой кремня толщиной 0,1 - 0,2 мкм с последующим отжигом ее при 900 - 910°С в течение 5 - 6 ч. Такая обработка обеспечивает повышение качества поверхности подложки и пленки. Улучшение морфологии поверхности подложки повышает коэффициент вхождения висмута в пленку и тем самым обеспечивает увеличение фарадеевского вращения. 1 табл.
2038432
выдан:
опубликован: 27.06.1995
УСТРОЙСТВО ДЛЯ ЖИДКОСТНОЙ ЭПИТАКСИИ МНОГОСЛОЙНЫХ СТРУКТУР

Изобретение относится к устройствам для жидкофазной эпитаксии многослойных структур, используемых для производства полупроводниковых приборов. С целью упрощения и расширения пределов управления толщиной выращиваемых эпитаксиальных слоев в кассете, состоящей из основания с подложкодержателем, корпуса с контейнером для растворов-расплавов, контейнеры для растворов-расплавов выполнены в виде цилиндров с кронштейнами, имеющих эксцентрично расположенные щели в донной части, расположенные под углом 45° по отношению к осям кронштейнов, и помещенных в рамку, соединенную со штоком, имеющую вырезы для поворота контейнеров для растворов-расплавов на угол 90°, а стенки основания, между которыми помещена рамка, имеют выступы, взаимодействующие с кронштейнами контейнеров для растворов-расплавов. 2 ил.
2034938
выдан:
опубликован: 10.05.1995
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОЗОННОГО ОКНА В ЛАЗЕРНОЙ ГЕТЕРОСТРУКТУРЕ НА ОСНОВЕ СОЕДИНЕНИЙ A3B5 И ИХ ТВЕРДЫХ РАСТВОРОВ

Изобретение относится к технологии п/п приборов. Сущность изобретения - на лазерной гетероструктуре n-n-n-p-p готовят линейные зоны в маске из оксида кремния. Между подложкой из арсенида галлия и гетероструктурой формируют жидкую линейную зону на основе свинца или висмута и ведут зонную перекристаллизацию. Через 1,5 - 2 ч направление градиента температуры меняют. В области линейных зон происходит образование широкозонных участков. По ним скалыванием по плоскостям (011) формируют резонаторы Фабри-Перо с широкозонными окнами. 5 ил.
2032776
выдан:
опубликован: 10.04.1995
СПОСОБ ПОЛУЧЕНИЯ МУЛЬТИКРИСТАЛЛОВ КРЕМНИЯ

Изобретение относится к полупроводниковой технологии и может найти применение в промышленности при изготовлении ряда дискретных полупроводниковых приборов (например, тензодатчиков, полевых транзисторов, переключателей, датчиков малых перемещений и других приборов). Предложенный способ включает создание композиции из пластины-подложки и пластины-источника, ориентированных в направлении 100 и скомпонованных с зазором между ними 10 - 40 мкм и углах разориентации плоскостей, перпендикулярных их рабочим поверхностям, равным 1 - 20°, формирование в зазоре жидкой зоны, создание градиента температуры и последующую локальную перекристаллизацию пластины - источника путем сканирования лазерного пучка до выхода на ее поверхность фрагментированной зоны. Перед сканированием лазерного пучка вблизи поверхности пластины - источника со стороны подводимого пучка располагают фильтр из иртрана, представляющий собой круглую пластинку диаметром, равным диаметру пластины - источника, на эффективной поверхности фильтра, равной площади квадрата, вписанного в окружности фильтра, изготавливают сквозные щели.
2026895
выдан:
опубликован: 20.01.1995
Наверх