суспензионная литая дисперсионно-твердеющая ферритокарбидная штамповая сталь

Классы МПК:C22C38/14 содержащие титан или цирконий
C22C33/04 плавлением
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Камская государственная инженерно-экономическая академия" (ИНЭКА) (RU)
Приоритеты:
подача заявки:
2011-03-11
публикация патента:

Изобретение относится к области металлургии, а именно к области получения и использования литой дисперсионно-твердеющей ферритокарбидной стали для тяжелонагруженных штампов горячего деформирования, пресс-форм для литья под давлением, а также штампов для твердо-жидкой штамповки сплавов на основе меди. Сталь содержит, в вес.%: углерод 0,27-0,32, титан 5,8-6,2, никель 0,5-0,9, карбид титана (TiC) 0,5-1,5, железо остальное, а также может содержать от следов до 0,05% марганца, 0,15-0,17% кремния и суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 0,03% серы и фосфора. Карбид титана введен в виде порошка с размером частиц до 10 мкм в ковш или в струю расплава в процессе заливки стали в охлаждаемую металлическую форму-кокиль. Улучшается комплекс технологических и эксплуатационных характеристик, а также снижается стоимость стали. 2 табл.

Формула изобретения

Суспензионная литая дисперсионно-твердеющая ферритокарбидная штамповая сталь, отличающаяся тем, что она содержит компоненты в следующем соотношении, вес.%:

углерод0,27-0,32
титан 5,8-6,2
никель 0,5-0,9
карбид титана (TiC) 0,5-1,5
железо остальное,


при этом TiC введен в виде порошка с размером частиц до 10 мкм в ковш или в струю расплава в процессе заливки стали в охлаждаемую металлическую форму-кокиль.

Описание изобретения к патенту

Изобретение относится к металлургии, машиностроению, а именно к области получения и использования литейных материалов для тяжелонагруженных штампов горячего деформирования (КГШП), пресс-форм для литья под давлением, а также штампов для твердожидкой штамповки (ШТЖЩ) (пресс «Автофордж») сплавов на основе меди.

Известны теплостойкие штамповые стали машиностроительного класса для горячего деформирования 4ХМФС, 5Х2МНФ (Ди-32), 5Х3В3МФС (Ди-23), 3Х2В8Ф, 5Х3В3МФ2Б и др. [1, 2].

Недостатками штамповых сталей мартенситного класса является их применение только в кованом состоянии. При изготовлении прессинструмента методом литья характерны низкие теплопроводность, вязкость и пластичность, что исключает возможность изготавливать пресс-инструмент методом литья из-за образования трещин при ускоренном охлаждении отливок. Известные штамповые стали мартенситного класса при эксплуатации тяжелонагруженного прессинструмента (штампы КГШП), в которых температура на гравюре достигает выше полиморфных превращений (от 800 до 900°С) претерпевают структурно-фазовый наклеп и разрушение из-за суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 превращений в течение каждого цикла нагружения.

Для изготовления литой прессоснастки на ОАО «КАМАЗ-Металлургия» предложена сталь 35Х5МНФСЛ, которая применяется для изготовления мелких штампов (весом до 60 кг) путем литья в песчано-глинистые цирконовые формы, получаемые по сложной технологии путем горячего отверждения с применением экологически вредных фенолформальдегидных смол. Кроме того, медленное охлаждение при кристаллизации отливок приводит к образованию грубой литой структуры, что приводит к низким эксплуатационным показателям по работоспособности в сравнении с инструментом из кованых сталей.

Перспективным способом улучшения комплекса механических и эксплуатационных характеристик инструментальных сталей при изготовлении литой прессоснастки для горячего деформирования является применение направленной кристаллизации, обеспечивающей получение дисперсной структуры при ускоренном охлаждении в процессе литья в охлаждаемый кокиль.

Применение направленной кристаллизации отливок с форсированным охлаждением без образования литейных трещин может быть осуществлено на сталях аустенитного или ферритного класса. Наиболее близкой к предлагаемой по технической сущности и достигаемому эффекту является дисперсионно-твердеющая аустенитно-карбидная литая штамповая сталь [3] 20Х20Н18ТЗЮФМБР состава, мас.%:

Углерод- 0,17-0,23
Хром - 14,1-18,2
Никель- 17,0-19,0
Титан - 2,0-3,0
Бор- 0,002-0,02
Ванадий - 0,9-1,5
Молибден- 0,8-0,9
Алюминий - 1,2-1,5
Ниобий - 0,1-0,15
Церий- 0,04-0,05
Железо - остальное.

Существенными недостатками этой стали является сложный химический состав, наличие дефицитных легирующих элементов и высокая стоимость.

Заявляемое изобретение направлено на улучшение комплекса технологических и эксплуатационных характеристик, а также снижение стоимости стали для литого пресс-инструмента.

Поставленная задача достигается тем, что экономно-легированная карбидно-ферритная литая штамповая сталь, содержащая углерод, титан, никель, железо, содержит компоненты в следующем соотношении, мас.%:

Углерод- 0,27-0,32
Титан - 5,8-6,2
Никель- 0,5-0,9
Карбид титана, TiC- 0,5-1,5
Железо - остальное

Описываемая литая штамповая сталь может содержать марганец от следов до 0,05%, кремний 0,15-0,17% и также серу и фосфор суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 0,03%.

Химический состав исследованных плавок предлагаемых и известных сталей и соответствующие им свойства приведены в табл.1 и 2.

Таблица 1
Плавки

сталей
Содержание элементов, мас.%
СCr NiTi WV MoAl NbСе FeTiC
Предлагаемый

1
0,27 - 0,55,8 -- -- -- -0,5
2 0,30- 0,76,0 -- -- -- -1,0
3 0,32- 0,96,2 -- -- суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 - -1,5
Известный

4
0,17-0,23 14,1-18,217-19 2-3 0,002 -0,020,9-1,5 0,8-0,9 1,2-1,50,1-0,15 0,04-0,05 ост.суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958
Примечание: Содержание железа во всех плавках до 100%.

Влияние Ti. Титан вводится в предлагаемую сталь в количестве 4 мас.% для создания ферритной матрицы, которая образуется в системе Fe-Ti при указанном количестве Ti [5]. Порядка 1 мас.% идет на создание TiC, а 0,8 - с целью формирования фазы типа Ni3Ti.

Влияние количества углерода, находящегося в пределах 0,27-0,32 мас.%. Для производства предлагаемого состава суспензии штамповой стали используется среднеуглеродистая сталь с указанным содержанием углерода, т.к. применение чистого железа является дефицитным материалом для действующих предприятий.

В заявленном составе углерода находится в пределах 0,27-0,32 мас.%, что обеспечивает получение феррито-карбидной матрицы. Карбидами являются соединения типа TiC. Стехоометрически для связывания в карбиды типа TiC, имеющегося углерода в пределах 0,27-0,32 мас.% дополнительно необходимо введение не более 1,0 мас.% Ti.

Влияние Ni в пределах 0,5-0,9 мас.%. Никель вводится в сталь с целью формирования фазы, типа N3Ti в ферритной Ti-Fe матрице при дисперсном твердении, которое протекает в процессе производства и эксплуатации штампов.

Эксплуатация штампов для горячего деформирования сопровождается выделением дисперсных соединений Ni3Ti, что благоприятно влияет на сохранение твердости пресс-инструмента. Верхний предел содержания Ni ограничивается в указанном количестве с целью сохранения в основе предлагаемой стали феррито-карбидной матрицы. Нижнее содержание Ni необходимо для получения дисперсных интерметаллидов типа Ni3Ti.

При этом часть титана затрачивается на формирование указанных интерметаллидов, поэтому общее количество титана в стали (с гарантией необходимой феррито-карбидной матрицы и наличием дисперсных интер-менталлидов Ni3Ti) составляет 5,8-6,2 мас.%.

Карбиды TiC 0,5-1,5 мас.%. Количество вводимых в струю металла или в ковш определено экспериментально с целью обеспечения твердости порядка 46-48 HRC.

Указанная твердость достаточна для обеспечения работоспособности штампов для горячего деформирования.

Комплексное влияние всех компонентов в заданных пределах, указанных в заявке, обеспечит повышение работоспособности, что подтверждается результатами испытаний новой стали по термомеханической усталости (табл.2).

Карбид титана в виде порошка размером частиц до суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 10 мкм вводится в расплав стали перед разливкой в ковш или в струю при заливке форм.

Таблица 2
Плавки сталей Теплопроводность, в т.м.к. Коэффициент линейного расширения

суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 ·106·суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 -1
Механические характеристики Относительное сопротивление термомеханической усталости циклов
суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 B суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 0,2 суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 , %
Предлагаемый

1
28,611,8 18261716 8,618117
230,6 10,51828 17208,1 20111
332,8 10,41828 17328,0 23128
Известный 4 41,4-42,612,3-13,6 1840-1900 17306,8-7,2 20125

Примечание: Испытание на термомеханическую усталость (ТМУ) осуществлялось по методике [4]. Оценивалось количество циклов нагружения образцов до появления трещин ТМУ размерами 0,1 мм в глубину образца. Режим испытаний отвечал эксплуатационному нагружению штампов «Автофордж» при штамповке латуней: Tmax=780°С на поверхности образца, Tmin +460°С, время контактирования образца со штампуемым материалом суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 =3 с пауза суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 n=12 с. Размеры образца: высота h=12 мм, толщина В=2 мм, длина образца l=80 мм.

Как видно из таблицы 2, предлагаемая ферритно-карбидная сталь по теплофизическим характеристикам практически мало отличается от известной аустенито-карбидной стали. Показатели сопротивления развитию трещин ТМУ у предлагаемой стали на 9-10% выше, чем у известной аустенито-карбидной стали.

Применение литого пресс-инструмента из ферритно-карбидной стали взамен традиционно изготавливаемого механическими и электрофизическими методами из кованных заготовок мартенситных сталей позволяет резко сократить продолжительность изготовления и производственные затраты за счет исключения механических операций по изготовлению сложной гравюры инструмента.

Замена сложнолегированной аустенито-карбидной стали на экономно-легированную феррито-карбидную сталь упрощает процесс выплавки стали, а также снижает себестоимость за счет уменьшения содержания легирующих элементов. Высокая твердость отливок из стали (46-48HRC) достигается за счет дисперсионного твердения при старении в результате выделения из феррита дисперсной суспензионная литая дисперсионно-твердеющая ферритокарбидная   штамповая сталь, патент № 2487958 -фазы типа Ni3Ti, а также за счет наличия карбидов титана.

Источники информации, принятые во внимание:

1. Л.А.Позняк, Ю.М.Скрынченко, С.И.Тишаев - Штамповые стали - М.: Металлургия, 1980 - 240 с.

2. AC № 1108126 СССР, МКИ С22С 38/26. Штамповал сталь. Авторы: М.С.Колесников, Э.Н.Корниенко, Л.А.Алабин и др. Опубликовано 15.04.84. Бюл. № 30.

3. AC № 1724723 СССР, МКИ С22С 38/26. Штамповал сталь. Авторы: М.С.Колесников, Л.В.Трошина и др. (СССР).

4. АС № 879400 СССР, МКл3 GOIN 3/60. Способ исследования термомеханической усталости материалов. Авторы: М.С.Колесников, Б.Л.Кузнецов, B.C.Кондратенко, А.Г.Шишкин (СССР). Опубликовано 07.11.81. Бюл. № 41.

5. М.Хансен и К.Андерко, Справочник «Структуры двойных сплавов», Т.2, пер. с английского М., Металлургия, 1962 г., 1488 с. с илл.

Класс C22C38/14 содержащие титан или цирконий

способ изготовления высокопрочного холоднокатаного стального листа с превосходной обрабатываемостью -  патент 2528579 (20.09.2014)
стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2527506 (10.09.2014)
высокопрочный холоднокатаный стальной лист, пригодный для химической конверсионной обработки, и способ его изготовления -  патент 2525013 (10.08.2014)
высокопрочные холоднокатаные стальные листы, обладающие превосходным качеством поверхности после штамповки, и способы их производства -  патент 2524031 (27.07.2014)
стальной лист и стальной лист с покрытием, обладающий превосходной формуемостью, и способ его производства -  патент 2524030 (27.07.2014)
холоднокатаный стальной лист, обладающий превосходной сгибаемостью и способ его производства -  патент 2524021 (27.07.2014)
покрытый сплавом на основе цинка стальной материал с превосходной стойкостью к растрескиванию из-за охрупчивания расплавленным металлом -  патент 2518870 (10.06.2014)
горячекатаный стальной лист и способ его изготовления -  патент 2518830 (10.06.2014)
высокопрочной стальной лист, обладающий превосходной способностью к термическому упрочнению и формуемостью, и способ его производства -  патент 2514743 (10.05.2014)
холоднокатаный стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2511000 (10.04.2014)

Класс C22C33/04 плавлением

шихта и электропечной алюминотермический способ получения ферробора с ее использованием -  патент 2521930 (10.07.2014)
титаносодержащая шихта для алюминотермического получения ферротитана, способ алюминотермического получения ферротитана и способ алюминотермического получения титаносодержащего шлака в качестве компонента титаносодержащей шихты для алюминотермического получения ферротитана -  патент 2516208 (20.05.2014)
шихта и способ алюминотермического получения ферромолибдена с ее использованием -  патент 2506338 (10.02.2014)
способ перевода режима работающей печи при выплавке кремнистых ферросплавов с карборундного метода на бескарборундный -  патент 2504596 (20.01.2014)
способ удаления титана из высокохромистых расплавов -  патент 2471874 (10.01.2013)
способ алюминотермического получения ферромолибдена -  патент 2468109 (27.11.2012)
алюминотермический способ получения металлов и плавильный горн для его осуществления -  патент 2465361 (27.10.2012)
способ получения азотированного феррованадия -  патент 2462525 (27.09.2012)
способ извлечения молибдена, никеля, кобальта или их смеси из отработанных или регенерированных катализаторов -  патент 2462522 (27.09.2012)
шихта для выплавки высокоуглеродистого ферромарганца -  патент 2456363 (20.07.2012)
Наверх