способ производства порошка из титановых сплавов

Классы МПК:B22F9/06 из расплавленного материала
Автор(ы):
Патентообладатель(и):Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU)
Приоритеты:
подача заявки:
2011-10-07
публикация патента:

Изобретение относится к порошковой металлургии, в частности к получению порошка титановых сплавов. Торец цилиндрической вращающейся заготовки расплавляют потоком плазмы в среде инертного газа, при этом применяют дополнительное охлаждение камеры с помощью отдельной, не зависимой от плазмотрона системой циркуляции инертного газа путем создания отдельного канала, через который нагретый газ забирается из камеры распыления, охлаждается до комнатной температуры и возвращается в камеру. Способ позволяет снизить количество несферических гранул при производстве порошка из титановых сплавов за счет дополнительного охлаждения частиц в полете, тем самым повысить выход годного порошка. 1 ил., 2 табл., 1 пр.

способ производства порошка из титановых сплавов, патент № 2478022

Формула изобретения

Способ производства гранул из титановых сплавов, включающий расплавление потоком плазмы торца цилиндрической вращающейся заготовки в среде инертного газа, отличающийся тем, что проводят дополнительное охлаждение камеры распыления с помощью отдельной независимой от плазмотрона системы циркуляции инертного газа путем создания канала, через который нагретый газ забирают из камеры распыления, охлаждают до комнатной температуры и возвращают в камеру, при этом снижают количество несферических гранул за счет дополнительного охлаждения частиц в полете.

Описание изобретения к патенту

Известен способ производства гранул методом плазменной плавки и центробежного распыления, описанный в патенте РФ № 2361698 от 20.07.09 г. «Способ получения сферических порошков и гранул». Он заключается в плазменной плавке и центробежном распылении вращающейся заготовки, причем распыление происходит по конической поверхности, что снижает пористость в гранулах. В данном способе не учтены особенности механизма кристаллизации капли расплава после отрыва от заготовки применительно его к титановым сплавам, что приводит к значительному снижению выхода годного порошка.

В качестве прототипа выбран способ получения гранул методом плазменной плавки и центробежного распыления на установке, конструкция которой описана в патенте РФ № 2376111 от 20.12.09 г. «Установка для получения порошков и гранул». Недостатком данной конструкции является то, что забор газа из камеры распыления происходит только через систему циркуляции газа для плазмотрона, который осуществляется с помощью вакуумных насосов с целью обеспечения ионизации газа для последующего распыления плазмой торца вращающейся заготовки. Попадая в камеру, плазма снова превращается в газ и забирается компрессором, затем снова подается в плазмотрон. Охлаждение газа происходит через охлаждаемые стенки камеры распыления, однако газ на некотором расстоянии от охлаждаемых стенок камеры застаивается в нагретом состоянии, таким образом, понижая эффективность охлаждения капель металла в полете за счет конвекции. Получаемая степень охлаждения для производства гранул титановых сплавов явно недостаточна и ведет к получению частиц несферической формы, что приводит к понижению выхода годного порошка.

Вышеуказанные способы используются в основном для производства гранул жаропрочных никелевых сплавов. Возможно их использование и при производстве титановых гранул, однако при этом необходимо учитывать особенности такого производства.

При производстве титановых гранул возможно образование частиц несферической чешуйчатой формы. Это объясняется тем, что гранулы из-за недостаточного охлаждения в полете претерпевают существенное формоизменение при соударении со стенкой камеры распыления, вследствие чего они теряют сферическую форму [Статья в журнале «Технология легких сплавов», 2010, № 2, с.44-48]. На некотором расстоянии от водоохлаждаемых стенок камеры распыления нагретый газ застаивается у стенок камеры распыления, а так как теплоотдача у титановых сплавов меньше, чем у никелевых, то гранулы не успевают полностью закристаллизоваться в полете. Поэтому при соударении со стенкой камеры происходит их пластическая деформация, что и ведет к образованию частиц несферической формы. Это, в свою очередь, приводит к понижению выхода годного порошка, так как при дальнейшей ситовой классификации гранул частицы такой формы не проходят через стандартную сетку и попадают в отсев.

В предлагаемом способе вводится еще одна, не зависимая от плазмотрона, система циркуляции газа с целью его дополнительного охлаждения. Принципиальная схема представлена на рис 1.

Принцип работы системы следующий: система вакуумируется вместе с установкой, затем в процессе плавки из камеры 2 с плазмотроном 1 газ по каналу 3 поступает через открытый вентиль 4 в охлаждаемый ресивер 5, потом через вентили 6, 7 и 9 он поступает обратно в камеру распыления под действием насоса 8 через фильтр 10 и вентиль 11. По окончании плавки вентили 11 и 4 закрывают и избыток спускают через вентиль 12.

ПРИМЕР. Была проведена серия плавок с плазменным распылением на гранулы крупностью 200 мкм до установки дополнительного канала охлаждения и после его установки. Результаты сведены в Таблицу 1 и Таблицу 2.

Из результатов видно, что выход годного порошка при производстве с дополнительным охлаждением вырос на 3%, что в условиях производства дает заметный экономический эффект. Увеличение выхода годного порошка является преимуществом плазменного распыления на гранулы по предложенному способу по сравнению с прототипом.

Цикл распыления до применения дополнительного охлаждения
Таблица 1
№ п/пВес заготовок, кгКоличество заготовок, шт.Вес гранул, кгВыход годного, %
1 49 742,5 86,7
2 48,6 740 82,3
3 48,5 739 80,4
4 51,5 744 85,4
5 58,2 849 84,1
способ производства порошка из титановых сплавов, патент № 2478022 Средний выход годного83,78

Цикл распыления после применения дополнительного охлаждения
Таблица 2
№ п/пВес заготовок, кгКоличество заготовок, шт.Вес гранул, кгВыход годного, %
1 55,8 848 86,1
2 55,5 848,5 87,3
3 47,6 742 88,2
4 55 846,3 84,1
5 47,5 742,5 89,4
способ производства порошка из титановых сплавов, патент № 2478022 Средний выход годного87,02

Класс B22F9/06 из расплавленного материала

способ получения железного порошка -  патент 2529129 (27.09.2014)
способ получения ультрадисперсных порошков интерметаллидов иттрия с кобальтом -  патент 2514237 (27.04.2014)
способ получения металлического порошка методом центробежного распыления -  патент 2475336 (20.02.2013)
стабилизированный порошок металлического лития для литий-ионного применения, состав и способ -  патент 2467829 (27.11.2012)
установка по производству оксида свинца -  патент 2455601 (10.07.2012)
стеклометаллические микрошарики и способ их получения -  патент 2455118 (10.07.2012)
способ получения магнитных гранул для электромагнитных аппаратов -  патент 2416492 (20.04.2011)
способ получения магнитных гранул для электромагнитных аппаратов -  патент 2416491 (20.04.2011)
способ получения сферических гранул жаропрочных и химически активных металлов и сплавов, устройство для его осуществления и устройство для изготовления исходной расходуемой заготовки для реализации способа -  патент 2413595 (10.03.2011)
способ гранулирования флюса -  патент 2387521 (27.04.2010)
Наверх