способ экологического мониторинга

Классы МПК:G01V3/16 устройства, специально предназначенные для использования вместе с летательным аппаратом
G01W1/06 дающие показания о состоянии погоды в целом
G01S5/00 Определение местоположения путем сопоставления в одной системе координат двух и более найденных направлений; определение местоположения путем сопоставления в одной системе координат двух и более найденных расстояний
Автор(ы):, ,
Патентообладатель(и):Общественная организация "Международная академия наук экологии, безопасности человека и природы" (RU)
Приоритеты:
подача заявки:
2009-10-15
публикация патента:

Изобретение относится к области экологии. Особенностью предлагаемого способа является то, что принимают сигналы источника радиоизлучений экологического или стихийного бедствия на пять антенн. Преобразуют принимаемые сигналы по частоте с использованием частоты способ экологического мониторинга, патент № 2413250 г1 первого гетеродина. Выделяют напряжения первой промежуточной частоты, в случае обнаружения сигнала источника радиоизлучений экологического или стихийного бедствия прекращают перестройку частоты способ экологического мониторинга, патент № 2413250 г1 первого гетеродина на время. Повторно преобразуют напряжение первой промежуточной частоты измерительного канала по частоте с использованием стабильной частоты способ экологического мониторинга, патент № 2413250 г2 второго гетеродина. Анализируют и регистрируют основные параметры обнаруженного сигнала. Перемножают напряжение второй промежуточной частоты измерительного канала с напряжениями первой промежуточной частоты пеленгационных каналов. Выделяют фазомодулированные напряжения на стабильной частоте способ экологического мониторинга, патент № 2413250 г2 второго гетеродина. Выделяют низкочастотные напряжения на частоте способ экологического мониторинга, патент № 2413250 вращения винта вертолета. Измеряют азимут способ экологического мониторинга, патент № 2413250 и угол места способ экологического мониторинга, патент № 2413250 источника радиоизлучений экологического или стихийного бедствия. Технический результат - расширение функциональных возможностей способа путем обнаружения и определения координат источников радиоизлучений. 3 ил. способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250

Формула изобретения

Способ экологического мониторинга, заключающийся в обзоре трубопровода трассоискателем путем облета на вертолете, одновременном сканировании трубопровода съюстированными тепловизионным и телевизионным датчиками и совместной цифровой фильтрации сигналов радиолокаторов, тепловизионного и телевизионного датчиков, при этом в качестве трассоискателя используют четыре радиолокатора разных длин волн, приемопередающие антенны четырех радиолокаторов размещают на концах лопастей несущего винта вертолета, принятые ими сигналы обрабатывают по алгоритму синтезированной апертуры, а о месте утечки жидкости или газа из трубопровода судят по локальному понижению температуры, зарегистрированному тепловизионным датчиком, и информации, полученной радиолокаторами и телевизионным датчиком, при этом о глубине залегания трубопровода судят по цвету его изображения на экране индикатора, отличающийся тем, что принимают сигналы источника радиоизлучений экологического или стихийного бедствия на пять антенн, четыре из которых являются приемопередающими и размещены на концах лопастей несущего винта вертолета, над втулкой которого помещают пятую приемную антенну измерительного канала, общую для четырех пеленгационных каналов, расположенных в азимутальной и угломестной плоскостях, по два на каждую плоскость, и подключенных к приемопередающим антеннам соответственно, преобразуют принимаемые сигналы по частоте с использованием частоты w г1 первого гетеродина, которую изменяют по пилообразному закону в заданном диапазоне частот для поиска и обнаружения в этом диапазоне сигналов источника радиоизлучений экологического или стихийного бедствия, выделяют напряжения первой промежуточной частоты, в случае обнаружения сигнала источника радиоизлучений экологического или стихийного бедствия прекращают перестройку частоты wг1 первого гетеродина на время, необходимое для анализа параметров обнаруженного сигнала и их регистрации, повторно преобразуют напряжение первой промежуточной частоты измерительного канала по частоте с использованием стабильной частоты wг2 второго гетеродина, анализируют и регистрируют основные параметры обнаруженного сигнала, перемножают напряжение второй промежуточной частоты измерительного канала с напряжениями первой промежуточной частоты пеленгационных каналов, выделяют фазомодулированные напряжения на стабильной частоте wг2 второго гетеродина, перемножают фазомодулированные напряжения в каждой плоскости между собой, выделяют низкочастотные напряжения на частоте способ экологического мониторинга, патент № 2413250 вращения винта вертолета, точно, но неоднозначно измеряют азимут способ экологического мониторинга, патент № 2413250 и угол места способ экологического мониторинга, патент № 2413250 источника радиоизлучений экологического или стихийного бедствия с использованием напряжения опорного генератора на частоте способ экологического мониторинга, патент № 2413250 , в каждой плоскости осуществляют автокорреляционную обработку фазомодулированных напряжений, грубо, но однозначно измеряют азимут способ экологического мониторинга, патент № 2413250 и угол места способ экологического мониторинга, патент № 2413250 источника радиоизлучений экологического или стихийного бедствия, регистрируют и обрабатывают измеренные значения азимута способ экологического мониторинга, патент № 2413250 и угла места способ экологического мониторинга, патент № 2413250 .

Описание изобретения к патенту

Предлагаемый способ относится к области экологии и может быть использован для обнаружения и определения координат источников радиоизлучений (ПРИ) экологического или стихийного бедствия, объектов, расположенных под поверхностью земли, снегового или ледового покрова и течи в подземных трубопроводах систем нефте- и газоперекачки.

Известны способы определения места утечки жидкости или газа из подземных трубопроводов (авт. свид. СССР № № 1.216.551, 1.283.566, 1.610.347, 1.657.988, 1.679.232, 1.705.709, 1.733.837, 1.777.014, 1.778.597, 1.812.386; патенты РФ № № 2.135.887, 2.138.037, 2.231.037; патенты США № № 4.289.010, 4.570.477, 5.038.614; патент Великобритании № 1.349.129; патент Франции № 2.498.325; патенты Японии № № 59-38.537, 60-14.900, 63-22.531 и другие).

Из известных способов наиболее близким к предлагаемому является «Способ определения места утечки жидкости или газа из трубопровода, находящегося в грунте» (патент РФ № 2.231.037, G01M 3/21, 2002), который и выбран в качестве прототипа.

Данный способ обеспечивает дистанционное определение мест утечек жидкости или газа из заглубленного магистрального трубопровода. При этом трассу магистрального трубопровода облетают на вертолете и осуществляют его обзор четырьмя радиолокаторами. Одновременно сканируют магистральный трубопровод съюстированными тепловизионными и телевизионным датчиками и осуществляют совместную цифровую обработку сигналов датчиков.

Однако потенциальные возможности известного способа используются не в полной мере. Данный способ может быть использован и для обнаружения и определения координат источников радиоизлучений экологического и стихийного бедствий.

Технической задачей изобретения является расширение функциональных возможностей способа путем обнаружения и определения координат источников радиоизлучений экологического и стихийного бедствия.

Поставленная задача решается тем, что способ экологического мониторинга, заключающийся, в соответствии с ближайшим аналогом, в обзоре трубопровода трассоискателем путем облета на вертолете, одновременном сканировании трубопровода съюстированными тепловизионным и телевизионным датчиками и совместной цифровой фильтрации сигналов радиолокаторов, тепловизионного и телевизионного датчиков, при этом в качестве трассоискателя используют четыре радиолокатора разных длин волн, приемопередающие антенны четырех радиолокаторов размещают на концах лопастей несущего винта вертолета, принятые ими сигналы обрабатывают по алгоритму синтезированной апертуры, а о месте утечки жидкости или газа из трубопровода судят по локальному понижению температуры, зарегистрированному тепловизионным датчиком, и информации, полученной радиолокаторами и телевизионным датчиком, при этом о глубине залегания трубопровода судят по цвету его изображения на экране индикатора, отличается от ближайшего аналога тем, что принимают сигналы источника радиоизлучений экологического или стихийного бедствия на пять антенн, четыре из которых являются приемопередающими и размещены на концах лопастей несущего винта вертолета, над втулкой которого помещают пятую приемную антенну измерительного канала, общую для четырех пеленгационных каналов, расположенных в азимутальной и угломестной плоскостях, по два на каждую плоскость, и подключенных к приемопередающим антеннам соответственно, преобразуют принимаемые сигналы по частоте с использованием частоты wГ1 первого гетеродина, которую изменяют по пилообразному закону в заданном диапазоне частот, выделяют напряжения первой промежуточной частоты, в случае обнаружения сигнала источника радиоизлучений экологического или стихийного бедствия прекращают перестройку частоты wГ1 первого гетеродина на время, необходимое для анализа параметров обнаруженного сигнала и их регистрации, повторно преобразуют напряжение первой промежуточной частоты измерительного канала по частоте с использованием стабильной частоты wГ2 второго гетеродина, выделяют напряжение второй промежуточной частоты, анализируют и регистрируют основные параметры обнаруженного сигнала, перемножают напряжение второй промежуточной частоты измерительного канала с напряжениями первой промежуточной частоты пеленгационных каналов, выделяют фазомодулированные напряжения на стабильной частоте wГ2 второго гетеродина, перемножают фазомодулированные напряжения в каждой плоскости между собой, выделяют низкочастотные напряжения на частоте способ экологического мониторинга, патент № 2413250 вращения винта вертолета, точно, но неоднозначно измеряют азимут способ экологического мониторинга, патент № 2413250 и угол способ экологического мониторинга, патент № 2413250 источника радиоизлучений экологического или стихийного бедствия с использованием напряжения опорного генератора на частоте способ экологического мониторинга, патент № 2413250 , в каждой плоскости осуществляют автокорреляционную обработку фазомодулированных напряжений, грубо, но однозначно измеряют азимут способ экологического мониторинга, патент № 2413250 и угол места способ экологического мониторинга, патент № 2413250 источника радиоизлучений экологического или стихийного бедствия, регистрируют и обрабатывают измеренные значения азимута способ экологического мониторинга, патент № 2413250 и угла места способ экологического мониторинга, патент № 2413250 .

Структурная схема устройства, реализующего предлагаемый способ, представлена на фиг.1. Расположение приемопередающих и приемной антенны на концах лопастей несущего винта вертолета и над втулкой винта показано на фиг.2. Характеристики проникновения радиоволн различных длин изображены на фиг.3.

Устройство содержит блок 13 радиолокационного контроля и блок 16 радиотехнического контроля, состоящий из одного измерительного канала 17 и четырех пеленгаторных каналов.

Блок 13 радиолокационного контроля содержит четыре радиолокатора, каждый из которых состоит из последовательно подключенных к выходу синхронизатора 1 передатчика 2.1 (2.2, 2.3, 2.4), антенного переключателя 3.1 (3.2, 3.3, 3.4), второй вход которого соединен с выходом переключателя 7 сектора обзора, а вход-выход связан с приемопередающей антенной 4.1 (4.2, 4.3, 4.4), приемника 5.1 (5.2, 5.3, 5.4), второй вход которого через генератор 8 строб-импульса соединен с выходом синхронизатора 1 и блока 6.1 (6.2, 6.3, 6.4) обработки, второй вход которого соединен с выходом синхронизатора 1, а выход подключен к соответствующему входу четырехцветного индикатора 9. Выходы антенных переключателей 3.1, 3.2, 3.3 и 3.4, синхронизатора 1, тепловизионного датчика 10 и телевизионного датчика 11 подключены к соответствующим входам блока 12 приема.

Измерительный канал 17 содержит последовательно включенные приемную антенну 18, первый смеситель 20, второй вход которого через первый гетеродин 19 соединен с выходом блока 32 перестройки, усилитель 25 первой промежуточной частоты, обнаружитель 30, второй вход которого через первую линию задержки 31 соединен с его выходом, ключ 33, второй вход которого соединен с выходом усилителя 25 первой промежуточной частоты, второй смеситель 35, второй вход которого соединен с выходом второго гетеродина 34, усилитель 36 второй промежуточной частоты и анализатор 37 параметров принимаемого сигнала.

Каждый пеленгаторный канал содержит последовательно подключенные к выходу приемопередающей антенны 4.1 (4.2, 4,3, 4.4) смеситель 21 (22, 23, 24), второй вход которого соединен с выходом первого гетеродина 19, усилитель 26 (27, 28, 29) первой промежуточной частоты, перемножитель 39 (40, 41, 42), второй вход которого соединен с выходом усилителя 36 второй промежуточной частоты, и узкополосный фильтр 43 (44, 45, 46). При этом к выходу первого (третьего) узкополосного фильтра 43 (45) последовательно подключены пятый (шестой) перемножитель 47 (48), второй вход которого соединен с выходом второго (четвертого) узкополосного фильтра 44 (46), пятый (шестой) узкополосный фильтр 51 (53) и первый (третий) фазометр 55 (57). К выходу второго (четвертого) узкополосного фильтра 44 (46) последовательно подключены вторая (третья) линии задержки 49 (50), фазовый детектор 52 (54), второй вход которого соединен с выходом второго (четвертого) узкополосного фильтра 44 (46), и второй (четвертый) фазометр 56 (58). Вторые входы фазометров 55, 56, 57 и 58 соединены с выходом опорного генератора 14, а выходы подключены к соответствующим входам блока 38 регистрации и обработки полученной информации. Выходы блока 12 приема и анализатора 37 параметров принимаемого сигнала также подключены к соответствующим входам блока 38 регистрации и обработки полученной информации.

Приемопередающие антенны 4.1, 4.2, 4.3 и 4.4 размещены на концах лопастей несущего винта вертолета, приемная антенна 18 размещена над втулкой винта вертолета. Двигатель 15 кинематически связан с винтом вертолета и опорным генератором 14.

Предлагаемый способ экологического мониторинга осуществляется следующим образом.

На вертолете размещаются блок 13 радиолокационного контроля и блок 16 радиотехнического контроля. Блок 13 радиолокационного контроля содержит четыре радиолокатора, тепловизионное 10 и телевизионное 11 устройства и блок цифровой фильтрации сигналов тепловизионного, телевизионного и радиолокационных устройств. Блок 16 радиотехнического контроля содержит измерительный канал 17 и четыре пеленгационных канала.

Радиолокационный канал использует следующие длины волны: способ экологического мониторинга, патент № 2413250 1=5 м, способ экологического мониторинга, патент № 2413250 2=1 м, способ экологического мониторинга, патент № 2413250 3=0,6 м, способ экологического мониторинга, патент № 2413250 4=0,003 м и обеспечивает точное определение места залегания магистрального трубопровода (трассы трубопровода).

Вырабатываемые в синхронизаторе 1 импульсы запускают четыре передатчика 2.1-2.4 и управляют работой блоков 6.1-6.4 обработки, генератора 8 строб-импульса, цветного индикатора 9, тепловизионного датчика 10, телевизионного датчика 11 и блока 12 приема.

Длительность и положение во времени строб-импульса определяют положение и протяженность наблюдаемого элемента земной поверхности по дальности.

Каждый передатчик работает на своей длине волны, которая определяет глубину проникновения электромагнитного излучения под подстилающую поверхность.

Зондирующие импульсы с передатчиков 2.1-2.4 через антенные переключатели 3.1-3.4 поступают на свои антенны 4.1-4.4, каждая из которых расположена на конце лопасти несущего винта вертолета (фиг.2). Каждая антенна подключается к своему передатчику и приемнику только в момент прохождения определенного заранее установленного сектора обзора. Это осуществляется с помощью переключателя 7 сектора обзора, который представляет собой электрический контакт, выполненный в виде четырех щеток, расположенных под соответствующими лопастями, перемещающихся в процессе вращения по неподвижному токопроводящему сегменту, который, в свою очередь, может устанавливаться в фиксированном положении вокруг оси винта. Каждые передатчик и приемник подключаются к антенне только в период прохождения соответствующей щетки по сегменту. Положение сегмента определяет положение сектора обзора в пространстве.

Антеннами 4.1-4.4 сигналы излучаются в направлении подстилающей поверхности. Отраженные от трубопровода сигналы принимаются антеннами 4.1-4.4 и через антенные переключатели 3.1-3.4 подаются на приемники 5.1-5.4, а затем на блоки 6.1-6.4 обработки, в которых осуществляется обработка принятых сигналов по алгоритму синтезирования апертуры. В этих же блоках учитывается эффект изменения дальности от антенны до трубопровода, вызванный перемещением антенн по окружности в процессе синтезирования. В блоках 6.1-6.4 обработки обрабатываются сигналы, принятые только с определенного участка дальности, положение и протяженность которого определяется стробирующим импульсом, подаваемым с генератора 8. С блоков 6.1-6.4 обработки сигналы поступают на индикатор 9 с цветным изображением, причем сигналы с каждого блока обработки соответствуют изображению в определенном цвете. Применение четырех радиолокаторов способ экологического мониторинга, патент № 2413250 1=5 м, способ экологического мониторинга, патент № 2413250 2=1 м, способ экологического мониторинга, патент № 2413250 3=0,6 м, способ экологического мониторинга, патент № 2413250 4=0,003 м с синтезированной апертурой позволяет обнаружить и определить координаты трубопровода, расположенного под подстилающей поверхностью земли, с высокой угловой разрешающей способностью. При этом одновременно по цвету изображения можно судить о глубине расположения трубопровода под поверхностью земли.

Тепловизионный канал позволяет фиксировать прямой физический признак утечки газа из заглубленного газопровода в виде локального понижения температуры (отрицательного теплового контраста на поверхности покрытия газопровода в районе течи) вследствие проявления дроссельного эффекта при истечении газа из газопровода. При этом возможные поверхностные тепловые контрасты в районе течи, по имеющимся экспериментальным и расчетным данным, составляют до 8-10°С, что существенно превышает пороговые характеристики контрастной чувствительности тепловизионных приборов (0,5-1,0°С), и, соответственно, могут быть выявлены измерениями. Однако эффективное выделение места течи по этому прямому физическому признаку затруднено вследствие наличия естественной неоднородности температурного поля.

В районе залегания трубопровода значения случайных температурных контрастов, вызванных рядом факторов: характер покрытия и структура почвы, время суток, года, метеоусловия, - могут быть соизмеримы или даже превышать значения идентифицируемых локальных температурных контрастов в районе течи. Соответственно для повышения надежности селекции места течи предлагается использовать информацию дополнительных каналов: радиолокационного и телевизионного, позволяющих выделить косвенные признаки, сочетание которых с измерением прямого признака (отрицательного теплового контраста) существенно снижает вероятность ошибочной идентификации (ложной тревоги).

Так, радиолокационный канал, выделяя геометрическое расположение металлического трубопровода на местности по контрастам радиолокационных сигналов на четырех частотах, формирует тем самым косвенный логический признак возможного расположения места течи, а именно только в районе расположения трубопровода.

Телевизионный канал, выделяя поле контрастов, первопричиной которых является наличие внешнего источника подсветки (солнца), также позволяет формировать косвенные логические признаки наличия течи, т.е. внутреннего не связанного с внешней подсветкой источника отрицательного теплового контраста, за счет совместной оценки размеров фактуры знака контрастных образований телевизионного и тепловизионного кадров с учетом условий подсветки (освещенность, метеоусловия и др.).

Таким образом, совместный логический анализ (фильтрация) сигналов многоканальной системы, измеряющей прямой признак (тепловой контраст) и косвенные признаки (контрасты отраженного излучения внешних источников, подсветки видимого и радиодиапазонов), позволяет существенно повысить эффективность обнаружения течи по сравнению с одноканальным способом, например тепловизионного или спектрального анализа поглощения газовых продуктов на местности.

Использование четырех радиолокаторов способ экологического мониторинга, патент № 2413250 1=5 м, способ экологического мониторинга, патент № 2413250 2=1 м, способ экологического мониторинга, патент № 2413250 3=0,6 м, способ экологического мониторинга, патент № 2413250 4=0,003 м в предлагаемом способе вызвано необходимостью, с одной стороны, обеспечения возможности получения допустимых для измерения отраженных сигналов от трубопровода, заглубленного в траншее на 1,5-2,0 м, с другой - локализации расположения трубопровода по результатам измерений с определенными ошибками для большей достоверности и точности выделения косвенного признака.

Оценка показала, что использование более коротковолнового радиоизлучения не обеспечивает локации трубопровода при требуемых заглублениях (1,5-2,0 м). С другой стороны, локация более длинноволновым диапазоном (десятки метров и более), обеспечивая прохождение сигнала на требуемую глубину залегания трубопровода, имеет неудовлетворительные показатели по точности пеленгации сигналов (в пределах десятков градусов).

Также неудовлетворительным является для предлагаемого способа оперативного контроля течи посредством, например, облета вертолетом и использования известного метода локализации металлических трубопроводов по искажениям геомагнитного поля (магнитометрический метод). При допустимых из условий безопасности высоких высотах полета не менее 50-100 м наличие значительной помеховой металлической массы в зоне измерения (корпус вертолета), выделение искажений геомагнитного поля, вызванных наличием массы трубопровода, аппаратурно затруднено. При этом точность пеленгации магнитометрическим методом не превосходит 20-30°, что существенно снижает ценность измеряемого косвенного признака.

Для обнаружения и определения координат источников радиоизлучений (ИРИ) экологического или стихийного бедствий на борту вертолета установлен блок 16 радиотехнического контроля. При этом в качестве ИРИ экологического или стихийного бедствия могут быть радиоизлучения специальных машин, перевозящих опасные грузы (например, горючее, взрывчатые вещества, сильнодействующие ядовитые вещества, радиоактивные вещества, биологические вещества и т.п.), радиоизлучения специальных машин, перевозящих промышленные отходы и мусор в места складирования и переработки, радиоизлучения пожарных и наблюдательных постов и т.п.

В качестве сигналов бедствия, как правило, используются сложные сигналы с фазовой манипуляцией (ФМн), обладающие высокой энергетической и структурной скрытностью.

Принимаемые антеннами 18, 4.1-4.4 сигналы, например, с фазовой манипуляцией (ФМн)

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

где V1-V5, w c, способ экологического мониторинга, патент № 2413250 c, Tc - амплитуды, несущая частота, начальная фаза и длительность сигнала; ±способ экологического мониторинга, патент № 2413250 w - нестабильность несущей частоты сигнала, обусловленная различными дестабилизирующими факторами; способ экологического мониторинга, патент № 2413250 k(t)={0,способ экологического мониторинга, патент № 2413250 } - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим концом, в котором заложена информация о типе экологического бедствия; R - радиус окружности (длина лопасти), на которой размещены приемные антенны 4.1-4.4; способ экологического мониторинга, патент № 2413250 =2способ экологического мониторинга, патент № 2413250 R - скорость вращения винта вертолета; способ экологического мониторинга, патент № 2413250 , способ экологического мониторинга, патент № 2413250 - азимут и угол места ИРИ; способ экологического мониторинга, патент № 2413250 - длина волны, поступают на первые входы смесителей 20-24 соответственно, на вторые входы которых подается напряжение первого гетеродина 19 линейно-изменяющейся частоты.

U г1(t)=Vг1·Cos(wг1t+способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 t2+способ экологического мониторинга, патент № 2413250 г1), 0способ экологического мониторинга, патент № 2413250 tспособ экологического мониторинга, патент № 2413250 Tг

где способ экологического мониторинга, патент № 2413250 - скорость изменения частоты гетеродина; Df - заданный диапазон частот; Tп - период перестройки.

Следует отметить, что поиск ФМн-сигналов в заданном диапазоне частот Df осуществляется с помощью блока 32 перестройки, который периодически с периодом Tп по пилообразному закону изменяет частоту w г1 гетеродина 19. В качестве блока 32 перестройки может использоваться генератор пилообразного напряжения. Заданный диапазон частот Df и частоты радиолокаторов не совпадают.

На выходе смесителей 20-24 образуются напряжения комбинационных частот. Усилителями 25-29 выделяются напряжения первой промежуточной частоты

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250 ,

способ экологического мониторинга, патент № 2413250

где способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 wпр1=wс-wг1 - первая промежуточная частота; способ экологического мониторинга, патент № 2413250 пр1=способ экологического мониторинга, патент № 2413250 с-способ экологического мониторинга, патент № 2413250 г1.

Напряжение Uпр1 (t) с выхода усилителя 25 первой промежуточной частоты поступает на вход обнаружителя 30. При обнаружении ФМн-сигнала на выходе обнаружителя 30 появляется постоянное напряжение, которое поступает на управляющий вход блока 32 перестройки, выключая его, на управляющий вход ключа 33, открывая его, и на вход линии задержки 31. Ключ 33 в исходном состоянии всегда закрыт. Время задержки способ экологического мониторинга, патент № 2413250 3 линии задержки 31 выбирается таким, чтобы можно было зафиксировать обнаруженный ФМн-сигнал и проанализировать его параметры.

При выключении блока 32 перестройки усилителями 25-29 выделяются следующие напряжения:

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

Напряжение Uпр6(t) с выхода усилителя 25 первой промежуточной частоты через открытый ключ 33 поступает на первый вход смесителя 35, на второй вход которого подается напряжение второго гетеродина 34 со стабильной частотой wг2

Uг2(t)=Vг2 ·Cos(wг2t+способ экологического мониторинга, патент № 2413250 г2).

На выходе смесителя 35 образуются напряжения комбинационных частот. Усилителем 36 выделяется напряжение второй промежуточной частоты

Uпр11(t)=V пр11·Cos[(wпр2±способ экологического мониторинга, патент № 2413250 w)t+способ экологического мониторинга, патент № 2413250 k(t)+способ экологического мониторинга, патент № 2413250 пр2], 0способ экологического мониторинга, патент № 2413250 tспособ экологического мониторинга, патент № 2413250 Tc,

где способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 - вторая промежуточная частота; способ экологического мониторинга, патент № 2413250 пр2=способ экологического мониторинга, патент № 2413250 пр1-способ экологического мониторинга, патент № 2413250 г2, которое поступает на вход анализатора 37 параметров принимаемого сигнала, где определяются длительность способ экологического мониторинга, патент № 2413250 э элементарных посылок, из которых составлен ФМн-сигнал, их количество N, длительность Тс с=N·способ экологического мониторинга, патент № 2413250 э) и закон фазовой манипуляции.

Напряжение Uпр11(t) с выхода усилителя 36 второй промежуточной частоты одновременно подается на вторые входы перемножителей 39-42 пеленгаторных каналов, на первые входы которых поступают напряжения Uпр7(t), Uпр8(t), Uпр9 (t), Uпр10(t) с выходов усилителей 26-29 первой промежуточной частоты соответственно. На выходе перемножителей 39-42 образуются фазомодулированные (ФМ) напряжения на стабильной частоте w г2 второго гетеродина

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

способ экологического мониторинга, патент № 2413250

где способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250

которые выделяются узкополосными фильтрами 43-46 с частотой настройки wн=wг2.

Знаки «+» и «-» перед величинами способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 соответствуют диаметрально противоположным расположениям антенн 4.1 и 4.2; 4.3 и 4.4 на концах лопастей несущего винта вертолета относительно приемной антенны 18, размещенной над втулкой винта вертолета.

Следовательно, полезная информация об азимуте способ экологического мониторинга, патент № 2413250 и угле места способ экологического мониторинга, патент № 2413250 переносится на стабильную частоту wг2 второго гетеродина 34. Поэтому нестабильность ±способ экологического мониторинга, патент № 2413250 w несущей частоты, вызванная различными дестабилизирующими факторами, и вид модуляции (манипуляции) принимаемых сигналов не влияют на результат пеленгации, тем самым повышается точность определения местоположения ИРИ.

Причем величина, входящая в состав указанных колебаний

способ экологического мониторинга, патент № 2413250

и называемая индексом фазовой модуляции, характеризует максимальное значение отклонения фазы сигналов, принимаемых вращающимися антеннами 4.1-4.4 относительно фазы сигнала, принимаемого неподвижной антенной 18.

Пеленгаторное устройство тем чувствительнее к изменению углов способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 , чем больше относительный размер R/способ экологического мониторинга, патент № 2413250 измерительной базы. Однако с ростом R/способ экологического мониторинга, патент № 2413250 уменьшаются значения угловых координат способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 , при которых разности фаз превосходят значение 2способ экологического мониторинга, патент № 2413250 , т.е. наступает неоднозначность отсчета углов способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 .

Следовательно, при способ экологического мониторинга, патент № 2413250 наступает неоднозначность отсчета углов способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 . Устранение указанной неоднозначности путем уменьшения соотношения R/способ экологического мониторинга, патент № 2413250 обычно себя не оправдывает, так как при этом теряется основное достоинство широкобазовой системы. Кроме того, в диапазоне метровых и особенно дециметровых волн брать малые значения RA, часто не удается из-за конструктивных соображений.

Для повышения точности пеленгации ИРИ в горизонтальной (азимутальной) и вертикальной (угломестной) плоскостях приемные антенны 4.1 и 4.2, 4.3 и 4.4 размещаются на концах лопастей несущего винта вертолета. Смешение сигналов от двух диаметрально противоположных приемных антенн 4.1 и 4.2, 4.3 и 4.4, находящихся на одинаковом расстоянии R от оси вращения несущего винта, вызывает фазовую модуляцию, аналогичную получаемой с помощью двух приемных антенн, вращающихся по кругу, радиус R1 которого в два раза больше (R1=2R).

Действительно, на выходе перемножителей 47 и 48 образуются гармонические напряжения

U10(t)=V10·Cos(способ экологического мониторинга, патент № 2413250 -способ экологического мониторинга, патент № 2413250 ),

U11(t)=V11·Cos(способ экологического мониторинга, патент № 2413250 -способ экологического мониторинга, патент № 2413250 ), 0способ экологического мониторинга, патент № 2413250 tспособ экологического мониторинга, патент № 2413250 Tc,

где способ экологического мониторинга, патент № 2413250 ; способ экологического мониторинга, патент № 2413250 с индексом фазовой модуляции

способ экологического мониторинга, патент № 2413250 , R1=2R,

которые выделяются узкоподосными фильтрами 51, 53 соответственно и поступают на первые входы фазометров 55 и 57, на вторые входы которых подается напряжение опорного генератора 14

U0 (t)=V0·Cosспособ экологического мониторинга, патент № 2413250 t.

Фазометры 55 и 57 обеспечивают точное, но неоднозначное измерение угловых координат способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 .

Для устранения возникающей при этом неоднозначности отсчета углов способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 необходимо уменьшить индекс фазовой модуляции без уменьшения R/способ экологического мониторинга, патент № 2413250 . Это достигается использованием автокорреляторов, состоящих из линий задержки 49, 50 и фазовых детекторов 52, 54, что эквивалентно уменьшению индекса фазовой модуляции до величины

способ экологического мониторинга, патент № 2413250

где d1<R.

На выходе автокорреляторов образуются напряжения

U12(t)=V10·Cos(способ экологического мониторинга, патент № 2413250 -способ экологического мониторинга, патент № 2413250 ),

U13(t)=V11·Cos(способ экологического мониторинга, патент № 2413250 -способ экологического мониторинга, патент № 2413250 )

с индексом фазовой модуляции способ экологического мониторинга, патент № 2413250 способ экологического мониторинга, патент № 2413250 m2, которые поступают на первые входы фазометров 56 и 58, на вторые входы которых подается напряжение U0 (t) опорного генератора 14. Фазометры 56 и 58 обеспечивают грубое, но однозначное измерение углов способ экологического мониторинга, патент № 2413250 и способ экологического мониторинга, патент № 2413250 .

Минимальное расстояние R0 от ИРИ до винта вертолета определяется из выражения

Fg(t)способ экологического мониторинга, патент № 2413250 (V2·t2)/(способ экологического мониторинга, патент № 2413250 R0),

где fg(t) - доплеровский сдвиг частоты; V=способ экологического мониторинга, патент № 2413250 ·R, способ экологического мониторинга, патент № 2413250 - длина волны.

Доплеровский сдвиг частоты измеряется в анализаторе 37 параметров принимаемого сигнала, в котором также определяется R0.

Местоположение ИРИ определяется по измеренным значениям способ экологического мониторинга, патент № 2413250 , способ экологического мониторинга, патент № 2413250 и R0 в блоке 38 регистрации и обработки полученной информации.

По истечении времени способ экологического мониторинга, патент № 2413250 3 постоянное напряжение с выхода линии задержки 31 поступает на управляющий вход обнаружителя 30 и сбрасывает его содержимое на нулевое значение. При этом ключ 33 закрывается, а блок 32 перестройки включается. Т.е. они переводятся в свои исходные положения.

При обнаружении сигнала следующего источника радиоизлучений экологического или стихийного бедствия работа устройства происходит аналогичным образом.

Таким образом, предлагаемый способ по сравнению с прототипом обеспечивает обнаружение и определение координат источников радиоизлучений экологического и стихийного бедствия. При этом пеленгаторное устройство инвариантно к виду модуляции (манипуляции) и нестабильности несущей частоты принимаемых сигналов, что обеспечивает точное и однозначное определение местоположения источников радиоизлучений экологического и стихийного бедствий.

Тем самым функциональные возможности известного способа расширены.

Класс G01V3/16 устройства, специально предназначенные для использования вместе с летательным аппаратом

фотограмметрический способ определения превышений подвижного объекта над земной поверхностью и устройство для аэрогеофизической разведки, реализующее этот способ -  патент 2508525 (27.02.2014)
автоматический беспилотный диагностический комплекс -  патент 2503038 (27.12.2013)
способ измерения составляющих вектора магнитного поля земли с аэроносителя -  патент 2501045 (10.12.2013)
бортовая электромагнитная система петли передатчика -  патент 2494420 (27.09.2013)
система для поиска и обнаружения мин -  патент 2485556 (20.06.2013)
способ определения места утечки жидкости или газа из трубопровода, находящегося в грунте, и устройство для его реализации -  патент 2439519 (10.01.2012)
способ определения стационарного геомагнитного поля при проведении морской магнитной съемки -  патент 2433427 (10.11.2011)
автоматический беспилотный диагностический комплекс -  патент 2424539 (20.07.2011)
способ определения координат эпицентра ожидаемого землетрясения -  патент 2423730 (10.07.2011)
способ определения места утечки жидкости или газа из трубопровода, находящегося в грунте, и устройство для его реализации -  патент 2411476 (10.02.2011)

Класс G01W1/06 дающие показания о состоянии погоды в целом

Класс G01S5/00 Определение местоположения путем сопоставления в одной системе координат двух и более найденных направлений; определение местоположения путем сопоставления в одной системе координат двух и более найденных расстояний

система навигации буксируемого подводного аппарата -  патент 2529207 (27.09.2014)
способ определения пеленгационной панорамы источников радиоизлучения на одной частоте -  патент 2528177 (10.09.2014)
способ формирования пространственного навигационного поля с распределенными источниками навигационных сигналов -  патент 2527923 (10.09.2014)
оценка местоположения пользовательского устройства в беспроводной сети -  патент 2527483 (10.09.2014)
способ определения местоположения источника радиоизлучения -  патент 2526094 (20.08.2014)
способ однопозиционной радиолокации подвижных объектов на дорожной сети -  патент 2524482 (27.07.2014)
интегрированная инерциально-спутниковая система ориентации и навигации для морских объектов -  патент 2523670 (20.07.2014)
способ однопунктного определения местоположения источника коротковолнового излучения -  патент 2523650 (20.07.2014)
устройство автоматизированного формирования эталонной информации для навигационных систем -  патент 2520386 (27.06.2014)
способ передачи и приема радиосигналов -  патент 2519296 (10.06.2014)
Наверх