покрытие стента

Классы МПК:A61F2/06 кровеносные сосуды
A61L31/10 высокомолекулярные материалы
A61L31/08 материалы для покрытий
A61L31/16 биологически активные материалы, например терапевтические вещества
Автор(ы):, ,
Патентообладатель(и):Шишацкая Екатерина Игоревна (RU)
Приоритеты:
подача заявки:
2008-08-19
публикация патента:

Изобретение относится к медицине и предназначено для использования в сердечно-сосудистой хирургии при стентировании артерий. В покрытии стента, включающем полимерный материал с активным антипролиферативным веществом, в качестве полимерного материала используют сополимер масляной и валериановой кислот, а в качестве активного антипролиферативного вещества - рубомицин, количество сополимера масляной и валериановой кислот на один стент равно 2-15 мг/стент, рубомицин включают в слой полимера в количестве 0,002-0,025 мг/стент. Техническим результатом является создание более простого покрытия стента, обладающего биосовместимостью и гемосовместимостью, с оптимальными физико-механическими свойствами, а также способностью медленно биорезорбироваться in vivo без образования токсичных продуктов и негативных реакций со стороны стенки сосуда в процессе использования. 2 з.п. ф-лы, 3 ил., 1 табл.

покрытие стента, патент № 2380059 покрытие стента, патент № 2380059 покрытие стента, патент № 2380059

Формула изобретения

1. Покрытие стента, включающее полимерный материал с активным антипролиферативным веществом, отличающееся тем, что в качестве полимерного материала используют сополимер гидрокси-бутирата и гидрокси-валериата, а в качестве активного антипролиферативного вещества - рубомицин.

2. Покрытие стента по п.1, отличающееся тем, что количество сополимера гидрокси-бутирата и гидрокси-валериата на один стент равно 2-15 мг.

3. Покрытие стента по п.1, отличающееся тем, что рубомицин включают в слой полимера в количестве 0,002-0,025 мг/стент.

Описание изобретения к патенту

Изобретение относится к медицине и предназначено для использования в сердечнососудистой хирургии при стентировании артерий.

Известно гибридное покрытие, состоящее из двух слоев, первый - из трех компонентов полимерной основы, сшивающего вещества и паклитакселя (таксола), и второго слоя - гепарина. (Патент США № 6231600, М.кл. A61F 2/06, 1999 г.).

Недостатком известного покрытия является сложная структура, которая имеет два слоя, первый слой покрытия состоит из трех компонентов: полимера, активного вещества и сшивающего агента, т.е. тип полимера не позволяет включить препарат прямо в полимерную матрицу без использования дополнительного сшивающего агента.

Наиболее близким техническим решением является двухслойное полимерное покрытие с активным веществом паклитакселем. Первый слой покрытия состоит из смеси двух полимеров: полилактида полиэтиленоксида (PLA-PEO) - это быстро разрушающийся гидрофильный материал. Второй слой - медленно разрушающийся гидрофобный материал, состоящий из смеси полилактида и поликапролактона (PLA-PCL), а в качестве активного вещества применяют таксол (паклитаксел), подавляющий развитие рестеноза после пластических операций на сосудах. (Патент США № 6258121 В1, М. кл. A61F 2/06, 1999 г.)

Недостатками известного покрытия являются использование в качестве биосовместимого покрытия полимера молочной кислоты (полилактида), у которого при гидролизе полимерной цепи in vivo происходит высвобождение мономеров молочной кислоты, сопровождающееся существенным закислением тканей (сдвиг рН 3,2-3,4). Полилактид уступает многим синтетическим полимерам по теплостойкости, при нагревании свыше 50°С изделия из полилактида деформируются, и, как следствие этого, они не могут быть подвергнуты стерилизации с применеием тепловых методов. Полиактид подвергается гидролизу в жидких средах, поэтому время его резорции in vivo исчисляется небольшим периодом 10-12 суток. Для повышения прочностных, температурных и биосовместимых свойств полилактид подвергают модификации с добавлением полигликолиевой кислоты и других технологических добавок. Это приводит к тому, что покрытие является сложным.

Применение цитостатического препарата паклитаксель (таксола) является дорогостоящим из-за получения его из экзотического сырья.

Задачей предлагаемого изобретения является создание более простого покрытия стента, обладающего биосовместимостью и гемосовместимостью, оптимальными физико-механическими свойствами, а также способностью медленно биорезорбироваться in vivo без образования токсичных продуктов и негативных реакций со стороны стенки сосуда в процессе использования.

Поставленная задача достигается тем, что в покрытии стента, включающем полимерный материал с активным антипролиферативным веществом, новым является то, что в качестве полимерного материала используют сополимер гидроксибутирата и гидоксивалериата кислот, а в качестве активного антипролиферативного вещества - рубомицин, количество сополимера гидроксибутирата и гидроксивалериата на один стент равно 2-15 мг/стент, и рубомицин включают в слой полимера в количестве 0,002-0,025 мг/стент.

В предлагаемом покрытии стента использован представитель нового класса термопластичных, биоразрушаемых и биосовместимых полимеров - полимеры гидроксипроизводных алкановых кислот (полигидроксиалкаонаты), а именно сополимер гидроксибутирата и гидроксивалериата и в качестве антипролиферативного вещества (цитостатического препарата) применен рубомицин - антибиотик антрациклинового ряда.

Сополимер гидроксибутирата и гидроксивалериата обладает следующими преимуществами:

- высокой биосовместимостью, включая гемосовместимость, так как не активирует ферментные системы крови и не вызывает агрегации тромбоцитов на поверхности;

- способностью не гидролизоваться в жидких средах, так как деградация данного сополимера является истинно биологической и происходит клеточным и гуморальными путями, образующиеся при этом мономеры гидроксибутирата и гидроксивалериата не вызывают резкого закисления тканей и, следовательно, выраженной воспалительной реакции;

- скорости биорезорбции сополимера значительно ниже, чем у полилактида, и поэтому покрытие стента in vivo может функционировать до 120 суток и более. Описание используемого сополимера гидроксибутирата и гидроксивалериата и примеры его получения следующие. Сополимер гидроксибутирата и гидроксивалериата (или другое название- гидроксимасляной и гидроксивалериановой кислот) - перспективный представитель семейства полигидроксиалканаотов (ПГА) - синтезируется микроорганизмами. Это химическое соединение (не два вещества!), образованные внутриклеточно в результате сополимеризации двух мономеров (гидрокси-бутирата и гидрокси-валериата); химическая формула:

покрытие стента, патент № 2380059

Способ синтеза сополимеров защищен патентом РФ 2051968 «Способ получения гетерополимера покрытие стента, патент № 2380059 -оксимасляной и покрытие стента, патент № 2380059 -оксивалериановой кислот». 1996. Волова Т.Г., Калачева Г.С., Константинова В.М., и опубликован в статье «Синтез сополимеров полигидроксибутирата и полигидроксивалерата поли(3ГБ/3ГВ) бактериями Ralstonia eutropha» в журнале «Микробиология», 2005. Т.74, № 1, С.63-69. / Волова Т.Г., Калачева Г.С.

Получение сополимеров гидоксибутирата и гидроксивалериата [поли(3ГБ/3ГВ)] осуществляется микробиологическим способом. Для этого бактерии Ralstonia eutropha B5786 культивировали на минеральной солевой среде с использованием в качестве источника углерода и энергии при автотрофном режиме СO2 и Н2, при гетеротрофном - фруктозу. Бактерии культивировали в периодическом режиме в лабораторном аппарате объемом до 10 литров при коэффициенте заполнения 0.3, оснащенном турбинной мешалкой открытого типа с частотой 1000 об/мин. Исходное соотношение компонентов в газовой смеси в контроле составляло для СО2, О2 и Н 2 соответственно как 1:2:6 по объему. При гетеротрофных условиях подачу фруктозы осуществляли перистальтическим насосом-дозатором (при текущей концентрации фруктозы в культуре не выше 10 г/л). Для максимальной аккумуляции ПГА применяли разработанный режим культивирования бактерий с лимитированием роста по азоту на первом этапе и в без азотной среде - на втором, при рН 7.0 и температуре 30°С [Волова Т.Г., Калачева Г.С. Способ получения полимера покрытие стента, патент № 2380059 -оксимасляной кислоты. Патент РФ № 2051967, 1996]. Для включения в ПГА в качестве сополимера гидрокси-валериата в среду вносили добавки валерата. Содержание полимера в биомассе и химический состав мономеров определяли хроматографией метиловых эфиров жирных кислот после метанолиза проб сухой биомассы на хроматомасс-спектрометре GSD plus (Hewlett Packard, USA). Вследствие токсичности валерата для культуры повышение фракции 3ГВ в сополимере увеличением дозы валерата оказалось невозможным. Выявлено, что при увеличение разовой подачи валерата в культуру в концентрации свыше 2.0 г/л наблюдается выраженное ингибирование роста бактерий и синтеза ПГА в целом. Для повышения включения фракции 3ГВ в поли(3ГБ/3ГВ) с учетом токсичности для культуры R.eutropha B5786 валерата в концентрации, свыше 2 г/л, разработаны режимы культивирования бактерий с дробной подачей валерата. Сочетанием количества добавок валерата в культуру (1, 2, 3 и более) и последующего времени культивирования найдены условия, при которых возможен синтез ПГА с варьированием соотношения мономеров 3ГБ/3ГВ в широких пределах, от 9:1 до 1:9 (мол%). Реализован процесс выращивания бактерий, обеспечивающий высокий общий выход сополимера (свыше 80-85%) с варьированием соотношения мономеров в нем.

Результаты потенциальных областей применения сополимеров гидроксибутирата и гидроксивалериата для получения специальных изделий опубликованы нами в следующих работах.

Волова Т.Г., Некрасов Ю.П., Шишацкая Е.И., Пузырь А.П., Гордеев С.А. Характеристика изделий на основе полиоксиалканоатов - разрушаемых природных полиэфиров // Пластические массы. 2003, № 3. С.6-8.

Шишацкая Е.И., Гордеев С.А., Волова Т.Г. Исследование свойств полигидроксиалканоатов, перспективных для получения пористых матриц // Перспективные материалы. 2004. № 5. С.40-44.

Гордеев С.А., Шишацкая Е.И., Волова Т.Г. Получение и исследование ориентированных волокон из сополимеров поли(гидроксибутирата/гидроксивалерата) // Перспективные материалы. - 2005. - № .3. - С.50-55.

Шишацкая Е.И., Жемчугова А.В., Волова Т.Г. Исследование биоразрушающихся полигидроксиалканоатов в качестве носителя противоопухолевых препаратов // Антибиотики и химиотерапия. - 2005. - № 2-3. - С.3-14.

Волова Т.Г., Шишацкая Е.И., Гордеев С.А. Характеристика ультратонких волокон, полученных электростатическим формованием термопластичного полиэфира [поли(гидроксибутирата/гидроксивалерата)] // Перспективные материалы. - 2006. - № 3. - С.25-29.

Шишацкая Е.И., Горева А. Микрочастицы из биорарушаемого полиоксибутирата в качестве матрикса для депонирования рубомицина // Перспективные материалы, - 2006. - № .4 - С.65-70.

Шишацкая Е.И. Клеточные матриксы из резорбируемых полигидроксиалканоатов // Клеточная трансплантология и тканевая инженерия. - 2007. - T.II, № 2. - С.68-76.

Свойства семейства ПГА, в том числе сополимеров гидроксибутирата и гидроксивалериата, изучены в различных аспектах и широко опубликованы в следующих работах.

На отсутствие цитотоксичности.

Шишацкая Е.И., Еремеев А.В., Гительзон И.И., Сетков Н.А., Волова Т.Г. Исследование цитотоксичности полиоксиалканоатов в культуре животных клеток // ДАН. 2000. Т.374, № 4. С.561-564.

Шишацкая Е.И., Есимбекова Е.Н., Волова Т.Г., Калачева Г.С., Кратасюк В.А. Гигиеническая оценка полиоксиалканоатов - природных полиэфиров нового поколения // Гигиена и санитария. 2002, № 4. С.59-63.

Шишацкая Е.И., Еремеев А.В. Гительзон И.И. Исследование свойств биодеградируемых полимеров (полиоксиалканоатов) в культуре животных клеток // Перспективные материалы. 2001. № 3. С.40-47.

Токсикологические исследования.

Шишацкая Е.И., Волова Т.Г., Гительзон И.И. Токсикологические исследования полиоксиалканоатов в эксперименте in vivo II ДАН. 2002. Т.383, № 4. С.565-567

Шишацкая Е.И., Волова Т.Г., Попова Т.Г. Исследование биологических свойств полиоксиалканоатов в хроническом эксперименте in vivo // Медицинская техника. 2002, № 4. С.29-32.

Благоприятная тканевая реакция на сополимеры гидроксибутирата и гидроксивалериата.

Шишацкая Е.И., Волова Т.Г., Ефремов С.Н., Пузырь А.П., Могильная О.А. Реакция тканей на биодеградируемые шовные нити из полиоксиалканоатов // Медицинская техника. 2002, № 4. С.23-26.

Шишацкая Е.И., Горева А.Ю., Воинова О.Н., Волова Т.Г. Реакция тканей на имплантацию микрочастиц из резорбируемых полимеров при внутримышечном введении // Бюллетень экспериментальной биологии и медицины. - 2007. - № 12. - С.635-639.

Результаты исследования биосовместимости.

Севастьянов В.И., Перова Н.В., Довжик И.А., Титушкин И.А., Немец Е.А., Беломестная З.М., Шишацкая Е.И., Волова Т.Г. Медико-биологические свойства полиоксиалканоатов - биодеградируемых бактериальных полимеров // Перспективные материалы. 2001. № 5. С.46-55.

Пригодность для контакта с кровью.

Sevastianov V.I., Perova N.V., Shishatskaya E.I., Kalacheva G.S., Volova T.G. Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood // J. Biomater. Sci. Polymer Edn. 2003. V.14, № 10. Р.1029-1042.

Исследование разрушаемости сополимеров гидроксибутирата и гидроксивалериата в биологических средах, подтверждающие отсутствие гидролиза и закономерности медленного биоразрушения.

Волова Т.Г., Беляева О.Г., Плотников В.Ф., Пузырь А.П. Исследование биодеградации микробных полиоксиалканоатов // Прикладная биохимия и микробиология. 1998. Т.34, № 5. С.539-543.

Шишацкая Е.И., Волова Т.Г., Гордеев С.А., Пузырь А.П. Биодеградация шовных нитей на основе полиоксиалканоатов в биологических средах // Перспективные материалы. 2002, № 2. С.56-62.

Физические свойства.

Волова Т.Г., Плотников В.Ф., Шишацкая Е.И., Миронов П.В., Васильев А.Д. «Физико-химические свойства двухкомпонентных -[поли(3ГБ/3ГВ)] полигидроксиалканоатов» в журнале «Биофизика». 2004. Т.49., № 6, С.1038-1046.

Примеры осуществления изобретения при указании количества используемых сополимеров гидроксибутирата и гидроксивалериата в интервале от 2 до 15 мг и количества рубомицина в интервале от 0,002 до 0,025 мг/стент следующие.

Пример 1.

Раствор сополимера гидроксибутирата и гидроксивалериата в дихлорметане (или хлороформе), содержащий рубомицин, наносят на поверхности стента, далее изделие высушивают в беспылевом боксе-ламинаре. Масса полимерного покрытия составляет 2 мг/стент, содержание рубомицина в покрытие - 0,002 мг/стент.

Пример 2.

Раствор сополимера гидроксибутирата и гидроксивалериата в дихлорметане (или хлороформе), содержащий рубомицин, наносят на поверхности стента, далее изделие высушивают в беспылевом боксе-ламинаре. Масса полимерного покрытия составляет 8 мг/стент, содержание рубомицина в покрытие - 0,012 мг/стент.

Пример 3.

Раствор сополимера гидроксибутирата и гидроксивалериата в дихлорметане (или хлороформе), содержащий рубомицин, наносят на поверхности стента, далее изделие высушивают в беспылевом боксе-ламинаре. Масса полимерного покрытия составляет 10 мг/стент, содержание рубомицина в покрытие - 0,018 мг/стент.

Пример 4.

Раствор сополимера гидроксибутирата и гидроксивалериата в дихлорметане (или хлороформе), содержащий рубомицин, наносят на поверхности стента, далее изделие высушивают в беспылевом боксе-ламинаре. Масса полимерного покрытия составляет 12 мг/стент, содержание рубомицина в покрытие - 0,020 мг/стент.

Пример 5.

Раствор сополимера гидроксибутирата и гидроксивалериата в дихлорметане (или хлороформе), содержащий рубомицин, наносят на поверхности стента, далее изделие высушивают в беспылевом боксе-ламинаре. Масса полимерного покрытия составляет 15 мг/стент, содержание рубомицина в покрытие - 0,025 мг/стент; вариант осуществления изобретения примера 5 является оптимальным.

При включении рубомицина в слой полимера в количестве меньше 0,002 мг/стент не обеспечивает подавление развития неоинтимы, а в количестве больше 0,025 мг/стент может иметь побочный токсический эффект.

В качестве полимерной основы (полимера) для получения покрытия стента используют одно вещество - сополимер гидроксибутирата и гидроксивалериата, который растворяют в дихлорметане или хлороформе, а затем вводят раствор рубомицина. Полученный гомогенный прозрачный раствор наносят на поверхность стента. Стент помещают в беспылевой бокс-ламинар при комнатной температуре. После испарения растворителя на поверхности стента образуется покрытие в виде пленки. Покрытие состоит из одногослоя из двух компонентов: один полимер и одно активное вещество.

В таблице приведены характеристики покрытий.

№ п/пХарактеристики ПрототипПредлагаемое изобретение
1Количество слоев 21
2 Количество компонентов для приготовления покрытия 42
3 Состав полимерной основы покрытия 1-й слой: смесь полилактид + полиэтиленоксид 2-й слой: смесь полилактид + поликапрола ктон 1 слой: сополимер гидроксибутирата и гидроксивалериата
4 Активное антипролифератив ное вещество Паклитаксель (таксол) Рубомицин
5 Температура плавления (деформации) покрытия 50°С160°С
6 Время разрушения покрытия в организме (крови) 10-12 суток90-120 суток
7 Сдвиг рН тканей сосуда 3,2-3,44,2-4,6

Предлагаемое изобретение поясняется фотографиями и графиком.

На фиг.1 изображена морфология фрагмента стенки сосуда через две недели после стентирования в месте контакта сосуда с полимерным покрытием (а) и стентом с полимерным покрытием, содержащем рубомицин (б): где 1 - отверстие от элемента стента, 2- неоинтима. Окраска - гематоксилин-эозин. Маркер - 1 мм; Фиг.2 - морфология фрагмента стенки сосуда через двенадцать недель после стентирования вместе контакта стенки сосуда со стентом с полимерным покрытием (а) и стентом с полимерным покрытием, содержащем рубомицин (б): где 1 - отверстие от элемента стента, 2-неоинтима. Окраска - гематоксилин-эозин. Маркер - 1 мм. Фиг.3 - динамика образования и толщина неоинтимы вокруг стента с полимерным покрытием и стентом с полимерным покрытием, содержащем рубомицин.

Техническим результатом является создание более простого покрытия стента, обладающего биосовместимостью и гемосовместимостью, с оптимальными физико-механическими свойствами, а также способностью медленно биорезорбироваться in vivo без образования токсичных продуктов и негативных реакций со стороны стенки сосуда в процессе использования.

Авторами получены высокоочищенные образцы полимеров для покрытия стентов, пригодные для биомедицинских применений, включая контакт с кровью.

Класс A61F2/06 кровеносные сосуды

автоматическое создание ориентиров для замены сердечного клапана -  патент 2526567 (27.08.2014)
гомографт сердечно-сосудистой системы (варианты), способ получения гомографта, среда для воздействия на ткани гомографта (варианты) -  патент 2525197 (10.08.2014)
многослойные сосудистые трубочки -  патент 2522966 (20.07.2014)
устройство для закрывания дефектов в сосудистой системе -  патент 2520153 (20.06.2014)
способ изготовления биорезорбируемого гибридного сосудистого импланта малого диаметра -  патент 2504406 (20.01.2014)
способ повышения биосовместимости трансплантатов клапанов сердца и сосудов -  патент 2499611 (27.11.2013)
клапаносодержащий протез корня аорты -  патент 2479288 (20.04.2013)
медицинский имплантат и способ его изготовления -  патент 2476187 (27.02.2013)
клапаносодержащий протез корня аорты -  патент 2474403 (10.02.2013)
клапаносодержащий протез легочной артерии -  патент 2466695 (20.11.2012)

Класс A61L31/10 высокомолекулярные материалы

способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций -  патент 2525181 (10.08.2014)
антимикробные/антибактериальные медицинские устройства, покрытые традиционными средствами китайской медицины -  патент 2524635 (27.07.2014)
грунтовка-усилитель адгезии для поверхностей с покрытием -  патент 2522390 (10.07.2014)
биорезорбируемая гидрогелевая полимерная композиция с биологически активными веществами (варианты) -  патент 2519103 (10.06.2014)
локальная сосудистая доставка пробукола, одного или в комбинации с сиролимусом, для лечения рестеноза, уязвимых бляшек, ааа (аневризмы брюшной аорты) и инсульта -  патент 2481084 (10.05.2013)
покрытие для медицинского устройства, включающее антитромботический конъюгат -  патент 2472529 (20.01.2013)
устройство для остеосинтеза и способ его получения -  патент 2471507 (10.01.2013)
трубка для энтерального питания -  патент 2463009 (10.10.2012)
способ нанесения сплошного покрытия на стент и стент, полученный названным способом -  патент 2458708 (20.08.2012)
биологически активная полимерная медицинская композиция (варианты) -  патент 2447902 (20.04.2012)

Класс A61L31/08 материалы для покрытий

материал заменителя костной ткани -  патент 2529802 (27.09.2014)
способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций -  патент 2525181 (10.08.2014)
имплантируемые продукты, содержащие наночастицы -  патент 2524644 (27.07.2014)
медицинские изделия и способ их получения -  патент 2485979 (27.06.2013)
способ создания наноструктурной биоинертной пористой поверхности на титановых имплантатах -  патент 2469744 (20.12.2012)
способ получения покрытия на биоспице для остеосинтеза -  патент 2465018 (27.10.2012)
трубка для энтерального питания -  патент 2463009 (10.10.2012)
способ модификации поверхности эндокардиальных электродов -  патент 2452516 (10.06.2012)
биологически активная полимерная медицинская композиция (варианты) -  патент 2447902 (20.04.2012)
подложка с электронодонорной поверхностью, содержащей частицы металла, включая палладий -  патент 2441672 (10.02.2012)

Класс A61L31/16 биологически активные материалы, например терапевтические вещества

способ изготовления биодеградируемых мембран для предотвращения образования спаек после кардиохирургических операций -  патент 2525181 (10.08.2014)
антимикробные/антибактериальные медицинские устройства, покрытые традиционными средствами китайской медицины -  патент 2524635 (27.07.2014)
грунтовка-усилитель адгезии для поверхностей с покрытием -  патент 2522390 (10.07.2014)
биорезорбируемая гидрогелевая полимерная композиция с биологически активными веществами (варианты) -  патент 2519103 (10.06.2014)
медицинские изделия и способ их получения -  патент 2485979 (27.06.2013)
локальная сосудистая доставка пробукола, одного или в комбинации с сиролимусом, для лечения рестеноза, уязвимых бляшек, ааа (аневризмы брюшной аорты) и инсульта -  патент 2481084 (10.05.2013)
способ обработки текстильных изделий для сердечно-сосудистой хирургии -  патент 2470671 (27.12.2012)
мембранная оболочка имплантируемой дозирующей системы -  патент 2462233 (27.09.2012)
биоразрушаемое средство для поддержания просвета сосудов -  патент 2452517 (10.06.2012)
биологически активная полимерная медицинская композиция (варианты) -  патент 2447902 (20.04.2012)
Наверх