способ извлечения белка из молочной сыворотки
Классы МПК: | A23J1/20 из молока, например казеина A23C9/148 с использованием молекулярного сита и(или) гель-фильтрации |
Автор(ы): | Хамизов Р.Х., Лялин В.А. |
Патентообладатель(и): | Хамизов Руслан Хажсетович, Лялин Валерий Александрович |
Приоритеты: |
подача заявки:
2001-10-10 публикация патента:
10.09.2003 |
Изобретение относится к способам извлечения белка из молочной сыворотки и может быть использовано в молочной, пищевой промышленности, микробиологической и медицинской отраслях промышленности. Молочную сыворотку обезжиривают, осветляют и охлаждают. После охлаждения молочную сыворотку предварительно пропускают через последовательно расположенные слои гелевого сильнокислотного катионита в Н-форме и гелевого сильноосновного анионита в ОН-форме или через смешанный слой указанных ионитов, а затем через активный сорбционный материал. В качестве активного сорбционного материала используют макропористые и макросетчатые промышленные сильнокислотные катиониты, через которые пропускают сыворотку при рН
5 или макропористые или макросетчатые промышленные сильноосновные аниониты, через которые пропускают сыворотку при рН
7. Способ позволяет удешевить процесс извлечения белка за счет использования более эффективных сорбционных материалов и повысить содержание чистых протеинов в получаемом концентрате. 2 з.п. ф-лы, 2 ил.
Рисунок 1, Рисунок 2


Формула изобретения
1. Способ выделения белка из молочной сыворотки, включающий стадии обезжиривания, осветления, охлаждения, пропускания через активный сорбционный материал и регенерации сорбционного материала с получением концентрированного раствора протеинов, отличающийся тем, что после стадии охлаждения молочную сыворотку предварительно пропускают через последовательно расположенные слои гелевого сильнокислотного катионита в Н-форме и гелевого сильноосновного анионита в ОН-форме или через смешанный слой указанных ионитов, в качестве активного сорбционного материала используют макропористые или макросетчатые промышленные сильнокислотные катиониты пищевого класса, через которые пропускают сыворотку при рН





Описание изобретения к патенту
Изобретение относится к способам выделения из биологических растворов высококачественного белка и может быть использовано в молочной, пищевой промышленности, микробиологической и медицинской отраслях промышленности. Известны способы выделения белка из биологических растворов, например молока, кислой (творожной) и сладкой (подсырной) молочной сыворотки ультрафильтрацией и диафильтрацией с последующим концентрированием и выделением сухого белкового препарата известными методами вакуумного выпаривания и сушки [1, 2]. Основным недостатком указанных способов является то, что получаемый белковый препарат содержит значительные количества молочного сахара - лактозы, что ограничивает ценность продукта и сферу его применения, в частности, для получения безлактозного и низколактозного молока. Известен способ выделения белка из биологических растворов "Вистек", разработанный английской фирмой "Коч-Лайт" [4]. Для осуществления процесса сорбции белка используется специальная ионообменная целлюлоза, известная под названием "среда Вистек". Основные недостатки: низкая емкость целлюлозных сорбентов, длительное время сорбции, регенерация белка осуществляется в статике, процесс не технологичен. Наиболее близким к предложенному способу по технической сути и достигаемому результату является способ [3, 4], разработанный французской фирмой "Рон-Пуленк". По этому способу предварительно обезжиренная, освобожденная от механических примесей и охлажденная сладкая (подсырная) молочная сыворотка пропускается через слой специального адсорбента "Сферосил", где происходит селективное поглощение растворенного протеина (белка), а лактоза, минеральные соли и прочие вещества остаются в проходящем через слой фильтрате. Десорбция белка и получение его концентрированного раствора производится обработкой сорбента раствором соляной кислоты. Дальнейшее повышение концентрации белка и сушка проводятся известными промышленными методами. Основными недостатками указанного способа являются его ограниченность по ассортименту перерабатываемых видов сыворотки, необходимость использования дорогого сорбционного материала и низкая степень концентрирования белка в получаемом концентрате, что приводит к высоким энергозатратам производства. Задачами настоящего изобретения являются удешевление процесса за счет использования более эффективных сорбционных материалов и повышения содержания чистых протеинов в получаемом концентрате; расширение ассортимента перерабатываемых видов биологических растворов. Поставленные задачи решаются тем, что в способе выделения белка из биологического раствора, включающем стадии обезжиривания, удаления механических примесей, охлаждения, пропускания через активный сорбционный материал и регенерации сорбционного материала, с получением концентрированного раствора протеинов, после стадии охлаждения биологический раствор, например сыворотку, предварительно пропускают через последовательно расположенные слои гелевого сильнокислотного катионита в Н-форме и гелевого сильноосновного анионита в ОН-форме или через смешанный слой указанных ионитов, а в качестве активного сорбционного материала используют макропористые или макросетчатые промышленные сильнокислотные катиониты или сильноосновные аниониты пищевого класса. При использовании макропористых или макросетчатых катионитов в качестве активного сорбционного материала сыворотку предварительно пропускают через последовательно расположенные слои гелевого сильнокислотного катионита в Н-форме и гелевого сильноосновного анионита в ОН-форме или через смешанный слой указанных ионитов при объемном соотношении слоев ионитов 1:1 или больше по отношению к катиониту, а пропускание сыворотки через активный сорбционный материал ведут при 3,5




















Пример 1. Свежевыделенную кислую (творожную) сыворотку объемом 1 л с начальным значением рН 4,8 и содержащую 6 г/л протеинов; 0,06 г-экв/л Са2+(1,2 г/л); 0,01 г-экв/л Mg2+ (0,12 г/л); 0,05 г-экв/л Na+ +K+ (~1,3 г/л), а также 48 г/л лактозы подвергают сепарации для отделения жиров до остаточной концентрации жирных веществ не более 0,5 г/л и казеиновой пыли. Обезжиренную очищенную сыворотку пропускают через картриджный фильтр с размером пор не более 20 мкм до остаточной концентрации взвешенных веществ не более 0,25 г/л. Далее очищенную и обезжиренную сыворотку охлаждают до температуры 5oС и пропускают через две последовательно расположенные ионообменные колонки, в первой из которых находится 40 мл катионита КУ-2х8 в Н-форме (с полной обменной емкостью ПОЕ=2,1 мг-экв/мл слоя) и 40 мл анионита АВ-17х8 в ОН- форме (ПОЕ=1,4 мг-экв/мл слоя). Высота слоя в колонках - по 30 см. Колонки снабжены рубашками для охлаждения, через которые циркулирует теплоноситель - вода, проходящая через холодильную установку. Скорость пропускания сыворотки 250 мл/ч. Полученную на выходе, частично деминерализованную сыворотку, с суммарной концентрацией солей кальция и магния не более 1х10-3 г-экв/л и остаточной концентрацией солей натрия и калия не более 0,04 г-экв/л, имеющую показатель рН 3,75, пропускают через колонку, содержащую 40 мл макропористого катионита КУ-23 в Na+-форме. Высота слоя в колонке - 30 см. Колонка снабжена охлаждающей рубашкой. Скорость пропускания сыворотки - 250 мл/ч. Далее колонку промывают 100 мл дистиллированной воды и через нее пропускают 85 мл 0,33 н. раствора бикарбоната натрия (27,7 г/л МаНСО3). При этом получают 85 мл раствора концентрата с рН 6,5 и с содержанием протеинов (определяемых селективно по поглощению фенольных групп аминокислотных остатков тирозина в сильнощелочной среде при длине волны 295 нм) более 65 г/л и практически не содержащего лактозу (определяемую по вращению плоскости поляризации в видимой области). Концентрат подвергают ультрафильтрации для получения 35% раствора протеинов и далее - распылительной сушке. Получают сухой продукт с содержанием белка более 95%. Регенерацию отработанного катионита КУ-2х8 проводят пропусканием через соответствующую колонку 100 мл 2 н. раствора НСl и последующей промывкой колонки 100 мл дистиллированной водой. Регенерацию отработанного анионита АВ-17х8 проводят пропусканием через соответствующую колонку 85 мл 2 н. раствора НаОН и последующей промывкой колонки 100 мл дистиллированной воды. Анионит готов к следующему циклу предподготовки сыворотки. Все регенерационные и промывочные воды объединяют и получают 385 мл нейтрального сбросного раствора солей натрия, кальция и магния с общей минерализацией 50 г/л. Пример 2. Проводят процесс в соответствии с примером 1, за исключением того, что вместо двух последовательных слоев катионита КУ-2х8 и анионита АВ-17х8 используют равновмерно смешанную композицию указанных ионитов в ионообменной колонке объемом 100 мл и высотой слоя 30 см. Получают на выходе частично деминерализованную сыворотку с суммарной концентрацией солей кальция и магния не более 1х10-4 г-экв/л и остаточной концентрацией солей натрия и калия не более 0,03 г-экв/л и имеющую показатель рН 3,80. Регенерацию отработанных катионита и анионита проводят после предварительного разделения слоев в восходящем потоке дистиллированной воды. Пример 3. Свежевыделенную сладкую (подсырную) сыворотку объемом 1 л с начальным значением рН 6,4 и содержащую 6,2 г/л протеинов, 0,11 г-экв/л Сl-(3,9 г/л), 0,01 г-экв/л SO4 2- (0,5 г/л), а также 60 г/л лактозы подвергают сепарации для отделения жиров до остаточной концентрации жирных веществ не более 0,5 г/л и казеиновой пыли. Обезжиренную сыворотку пропускают по аналогии с примером 1 через картриджный фильтр с размером пор не более 20 мкм до остаточной концентрации взвешенных веществ не более 0,25 г/л. Далее очищенную и обезжиренную сыворотку охлаждают до температуры oС и пропускают через две последовательно расположенные ионообменные колонки, в первой из которых находится 30 мл катионита КУ-2х8 в Н+-форме (с полной обменной емкостью ПОЕ= 2,1 мг-экв/мл слоя) и 60 мл анионита АВ-17х8 в ОН--форме (ПОЕ=1,4 мг-экв/мл слоя). Высота слоя в колонках - по 25 см и 40 см соответственно. Полученную на выходе, частично деминерализованную, сывортку, не содержащую сульфатов, с концентрацией хлоридов 0,03 г-экв/л и имеющую показатель рН 7,5, пропускают через колонку, содержащую 50 мл макропористого анионита АВ-171 в Сl--форме. Высота слоя в колонке - 35 см. Скорость пропускания сыворотки - 250 мл/ч. Далее колонку промывают 100 мл дистиллированной воды и через нее пропускают 100 мл 0,3 н. раствора НСl. При этом получают 100 мл раствора концентрата с рН 3,5 и с содержанием протеинов более 60 г/л, практически не содержащего лактозу. Концентрат подвергают дальнейшей переработке в соответствии с примером 1. Регенерацию отработанного катионита КУ-2х8 проводят пропусканием через соответствующую колонку 800 мл 2 н. раствора НСl с последующей промывкой колонки 100 мл дистиллированной воды. Регенерацию отработанного анионита АВ-17х8 проводят пропусканием через соответствующую колонку 120 мл 2 н. раствора NaOH с последующей промывкой колонки 100 мл дистиллированной воды. Анионит готов к следующему циклу предподготовки сыворотки. Все регенерационные и промывочные воды объединяют и получают 400 мл нейтрального сбросного раствора солей натрия, кальция и магния с общей минерализацией 45 г/л. Источники информации
1. Ю.Н. Кузьмин, В.А. Лялин, Б.М. Двинский. "Применение мембранных методов в молочной промышленности". ЦНИИТЭИмясомолапром. 1980 - 37 с; с 24-32. 2. В.А. Лялин. "Ультрафильтрационные установки для продовольственных отраслей". Пищевая и перерабатывающая промышленность, 7, 1985, с.28-33. 3.Palmer D.E. "Recupero Delle proteine Dell industria alimentare tramite scambio tonico" "Inquinamento" Hali 1982, том 24, 3 (с.99, 101, 103, 105, 107, 109, 1116, 113). 4. А.Г. Храмцов "Молочная сыворотка". Москва. ВО "Агропромиздат", 1990 - 240 с; с 77-81.
Класс A23J1/20 из молока, например казеина
Класс A23C9/148 с использованием молекулярного сита и(или) гель-фильтрации