композиционный материал
Классы МПК: | C01B31/06 алмаз C01B31/36 кремния или бора C04B35/52 на основе углерода, например графита |
Автор(ы): | Гордеев С.К. (RU), Данчукова Л.В. (RU), ЭКСТРЕМ Томми (SE), КЛОУБ Каузер (SE) |
Патентообладатель(и): | Акционерное общество закрытого типа "Карбид" (RU) |
Приоритеты: |
подача заявки:
2000-11-21 публикация патента:
20.06.2003 |
Изобретение предназначено для химической промышленности и может быть использовано при изготовлении теплоотводов, теплообменников. Композиционный материал содержит, об. %: зерна алмаза - 50-85; кремний - 2-49; карбид кремния - 1-48. Матрица материала состоит из карбида кремния и кремния. Содержание зерен алмаза размером более 40 мкм - не менее 25% от общего содержания алмаза в материале. Композиционный материал имеет коэффициент теплопроводности при комнатной температуре более 300 Вт/м
К, коэффициент температуропроводности - не менее 1,6
10-4 м2/с. Материал также отличается высокой твердостью и износостойкостью. Из него можно изготовить изделия заданной формы объемом более 10 мм3, не требующие дополнительной механической обработки.


Формула изобретения
Композиционный материал с высокой теплопроводностью, содержащий алмазные зерна в матрице из карбида кремния и кремния, отличающийся тем, что он содержит указанные компоненты в следующем соотношении, об.%:Зерна алмаза - 50 - 85
Кремний - 2 - 49
Карбид кремния - 1 - 48
при этом содержание зерен алмаза размером более 40 мкм составляет не менее 25% от общего содержания алмаза в материале.
Описание изобретения к патенту
Изобретение относится к области композиционных материалов, а точнее к алмазосодержащим композиционным материалам с высокой теплопроводностью и температуропроводностью. Материалы с высокой теплопроводностью эффективно используются в теплообменных устройствах для изготовления теплоотводов, теплообменников и т.п.. Среди металлов наивысшие теплопроводности имеют медь (400 Вт/м













1) путем выдержки заготовки в среде газообразного углеводорода или углеводородов при повышенной температуре, например, природного газа при t= 750-950oC или по крайней мере одного из газов, выбранного из группы, содержащей ацетилен, метан, этан, пропан, пентан, гексан, бензол и их производные при t=510-1200oС. При использовании газообразных углеводородов термообработку целесообразно проводить до уменьшения концентрации кристаллов алмаза в заготовке на не более чем 15 мас.%. 2) путем термообработки в инертной среде, например вакууме или в среде инертного газа при t=l000-1900oС. Независимо от того, каким из указанных методов осуществлена термообработка заготовки, конечной стадией процесса является пропитка полученного полуфабриката расплавленным кремнием. Указанную пропитку осуществляют известными методами, например, путем расплавления кремния на поверхности полуфабриката, или подачей уже расплавленного кремния на поверхность полуфабриката, или погружением последнего в расплав кремния. На этой стадии происходит взаимодействие кремния с имеющимся в составе полуфабриката углеродом с образованием карбида кремния. Карбид кремния, а также не вступивший в химическое взаимодействие кремний образуют матрицу композиционного материала. Стадии термообработки и пропитки могут быть совмещены в одной печи, когда пропитка следует непосредственно после термообработки. Содержание указанных компонентов в материале является оптимальным. Уменьшение концентрации алмаза менее 50 об. % нецелесообразно, т.к. это приводит к ухудшению теплофизических свойств. Повышение концентрации алмаза выше 85 об.% затрудняет получение материала: возникают сложности формования заготовок материала, а на стадии пропитки полуфабриката расплавленным кремнием возникают дефекты, существенно ухудшающие комплекс свойств. Для достижения высоких теплофизических свойств материала целесообразно использовать такие исходные смеси зерен алмаза, которые обеспечили бы в конечном композите содержание зерен алмаза размером более 40 мкм не менее 25% от общего содержания алмаза в материале. Сущность изобретения состоит в следующем. Предложенный композиционный материал включает три фазы (алмаз, карбид кремния и кремний), обладающие относительно высокой теплопроводностью, которая обеспечивается одинаковым во всех случаях фононным механизмом переноса тепла. Для обеспечения высокого уровня теплопроводности и температуропроводности в композиционном материале необходимо реализовать очень плотное сопряжение отдельных фаз и оптимальную комбинацию фаз с различной плотностью, теплоемкостью и теплопроводностью. В предлагаемом техническом решении сопряжение отдельных фаз осуществляется за счет их химического взаимодействия. Это следует из описанного выше процесса получения материала и подтверждается исследованиями структуры материала. Тем самым удается добиться высокой скорости распространения фононов в материале и обеспечить большую длину их свободного пробега в материале. Наиболее высокие уровни теплопроводности и температуропроводности достигаются в том случае, если композиционный материал содержит более крупные алмазные зерна. Предпочтительно, если содержание крупных алмазных зерен (более 40 мкм) в материале превышает 25 об.%. Следует заметить, что отсутствие примесей в материале положительно сказывается на его теплофизических свойствах. Поэтому при реализации процесса целесообразно использовать алмазные зерна с низким содержанием примесей (в том числе дополнительно очищенные обработкой кислотами), а также кремний высокой степени чистоты. Следующие примеры характеризуют сущность изобретения. Пример 1. Композиционный материал содержит в своем составе зерна алмаза - 65 об.%, карбид кремния - 28 об.%, кремний - 7 об.%. При этом 58% от общего содержания алмазных зерен составляют зерна размером 400-600 мкм, остальное - зерна менее 14 мкм. Материал имеет коэффициент теплопроводности 495 Вт/м















где с - удельная теплоемкость материала. Из примеров видно, что по своим теплофизическим свойствам предлагаемый материал значительно превосходит известные. Комплекс высоких свойств заявляемого материала позволяет использовать его для изготовления прецизионных приборов и устройств, особенно тех, в которых необходимы высокие теплофизические свойства. Несомненным достоинством материала является возможность получения из него изделий объемом более 10 мм3 заданной формы, требующих минимальной механической обработки, что связано с особенностями технологии изготовления данного материала. Следует отметить, что полученный материал отличается высокой твердостью и износостойкостью и может быть использован в условиях интенсивного абразивного износа. Источники, использованные при составлении описания
1. Патент США 5783316, кл. В 23 К 031/02, 1998. 2. Патент РФ 2151126, кл. С 04 В 35/52, 2000. 3. A. Cezairliyan et al. High temperature Laser-Pulse Thermal Diffusivity Apparatus, International Journal of Thermophysics, V.15, #2, 1994, р. 317-341.
Класс C01B31/36 кремния или бора
Класс C04B35/52 на основе углерода, например графита