шихта керамического материала для высокочастотных термокомпенсирующих материалов и способ получения материала из нее

Классы МПК:H01G4/12 керамические диэлектрики
C04B35/46 на основе оксидов титана или титанатов
Автор(ы):, ,
Патентообладатель(и):Витебское производственное объединение "Монолит" (BY)
Приоритеты:
подача заявки:
1992-10-27
публикация патента:

Использование: получение керамических материалов для высокочастотных термокомпенсирующих конденсаторов. Сущность изобретения: шихта включает CaTiO3, SrTiO3, MnCO3, Nb2O5, ZnO и H3BO3, а способ основан на получении шихты путем смешивания исходных компонентов, формовании заготовок из нее и их обжиге, при этом перед смешиванием компонентов шихты производят гидротермальную обработку ZnO и H3BO3 путем их смешивания в водной среде при 80 - 100oC с последующим обезвоживанием до сыпучего состояния, а после гидротермальной обработки их смешивают с остальными компонентами шихты, прокаливают при 750 - 850oC и еще раз смешивают. Технический результат: снижение температуры спекания, повышение электропрочности, а также снижение трудоемкости и энергозатрат при изготовлении материалов 2 с.п. ф-лы, 3 табл.
Рисунок 1

Формула изобретения

1. Шихта керамического материала для высокочастотных термокомпенсирующих конденсаторов, включающая титанат кальция, титанат стронция, углекислый марганец и оксид ниобия, отличающаяся тем, что она дополнительно содержит оксид цинка и борную кислоту при следующем соотношении компонентов, мас.

CaTiО3 40,7 57,95

SrTiO3 36,0 45,75

MnCO3 0,05 0,15

Nb2O5 2 6

ZnO 1,6 3,1

H3BO3 2,4 4,3

2. Способ получения керамического материала из шихты, включающий получение шихты путем смешивания CaTiO3, SrTiO3, MnCO3, Nb2O5, ZnO и H3BO3, формования из нее керамических заготовок и их обжиг, отличающийся тем, что перед смешиванием компонентов шихты предварительно производят гидротермальную обработку ZnO и H3BO3 путем их перемешивания в водной среде при 80 100oС с последующим обезвоживанием до сыпучего состояния, а после гидротермальной обработки их смешивают с остальными компонентами шихты и прокаливают при 750

850oС и еще раз смешивают.

Описание изобретения к патенту

Изобретение относится к области производства радиодеталей, в частности к составам и способам получения керамических материалов, и может быть использовано в керамическом конденсаторостроении при изготовлении высокочастотных термокомпенсирующих конденсаторов.

Известны керамические материалы для высокочастотных термокомпенсирующих конденсаторов, содержащие спеки титаната кальция, титаната стронция, титаната висмута и модифицирующие добавки (см. Электронная техника, сер. 8, 1971, вып. 2/23, стр. 53 56), а также известен способ получения керамических материалов путем одновременного смешения и измельчения компонентов шихты, формования и обжига керамических заготовок (см. Н.П. Богородицкий. Радиокерамика. Госэнергоиздат, 1963, стр. 126, 178 и 393).

Данные материалы имеют повышенную диэлектрическую проницаемость, но в то же время характеризуется высокой температурой спекания (шихта керамического материала для высокочастотных   термокомпенсирующих материалов и способ получения материала   из нее, патент № 20799161250oC), а способ, являясь достаточно производительным, не обеспечивает высоких реологических и технологических свойств материалов.

Наиболее близким по технической сущности к изобретению являются шихта керамического материала для высокочастотных термокомпенсирующих конденсаторов, включающая CaTiO3, SrTiO3, MnCO3 и Nb2O5 (см. патент СССР N 1446130), и способ изготовления керамики путем смешивания компонентов, приготовления спеков и их дробления, смешивания с добавлением ZnB2O4, термообработки, вторичного дробления, формования и обжига заготовок (см. а.с. СССР N 791703).

Эта шихта позволяет получать керамический материал с повышенной диэлектрической проницаемостью и удельным сопротивлением, а также не требует дополнительной термообработки компонентов для образования твердого раствора с низкими диэлектрическими потерями, а способ способствует сокращению времени спекания и обеспечению стабильности температурного коэффициента диэлектрической проницаемости.

Существенным недостатком шихты является то, что она в силу особенностей своего компонентного состава имеет сравнительно высокую температуру спекания (1220 1280oC), а материал на ее основе характеризуется недостаточно высокой электропрочностью, что не обеспечивает возможности дальнейшего снижения толщины диэлектрических слоев и не позволяет замену дорогостоящего палладия на более дешевые металлы при изготовлении монолитных конденсаторов, а недостатком способа является то, что он в силу особенностей своих технологических приемов, например, дополнительной термообработки, характеризуется высокой трудоемкостью и энергозатратами и не обеспечивает высокой однородности шихты материала, что, в свою очередь, ограничивает возможность получения более высокого технического результата при изготовлении высокочастотных термокомпенсирующих конденсаторов.

Предлагаемая шихта и способ получения керамического материала из нее позволяют устранить недостатки известных способов и составов шихт и обеспечивают достижение более высокого технического результата, заключающегося в повышении однородности шихты, снижении температуры спекания и повышении электропрочности материала, при одновременном снижении трудоемкости и энергозатрат при изготовлении керамического материала.

Сущность изобретения заключается в том, что в заявляемой шихте керамического материала для высокочастотных термокомпенсирующих конденсаторов, включающей титанат кальция, титанат стронция, углекислый марганец и оксид ниобия, вышеуказанный технический результат обеспечивается тем, что она дополнительно содержит оксид цинка и борную кислоту при следующем соотношении компонентов, мас.

CaTiO3 40,7 57,95

SrTiO3 36 45,75

MnCO3 0,05 0,15

Nb2O5 2 6

ZnO 1,6 3,1

H3BO3 2,4 4,3

а в способе получения керамического материала из данной шихты, включающей получение шихты путем смешивания CaTiO3, SrTiO3, MnCO3, Nb2O5, ZnO и H3BO3, формование из нее керамических заготовок и их обжиг, вышеуказанный технический результата обеспечивается тем, что перед смешиванием компонентов шихты предварительно производят гидротермальную обработку ZnO и H3BO3 путем их перемешивания в водной среде при 80 100oC, с последующим обезвоживанием до сыпучего состояния, а после гидротермальной обработки их смешивают с остальными компонентами шихты и прокаливают при температуре 750 850oC и еще раз смешивают.

В данном случае снижение температуры спекания и повышение электропрочности керамики достигаются в результате введения в состав шихты прошедших гидротермальную обработку ZnO и H3BO3, а повышение однородности шихты и снижение трудоемкости и энергозатрат при получении керамического материала достигаются в результате гидротермальной обработки ZnO и H3BO3 при низкой температуре 80 100oC, что позволяет исключить трудоемкий синтез бората цинка при 800 850oC, а также исключить высокотемпературную обработку спеков из основных компонентов шихты.

Сопоставительный анализ заявляемой шихты и способа получения материала из нее с прототипом показывает, что шихта отличается от известных введением в состав ZnO и H3BO3 при новом соотношении компонентов, а способ отличается от известных новой операцией гидротермальной обработки ZnO и H3BO3. Таким образом, предлагаемая шихта и способ получения материала из нее являются новыми, т.к. их признаки не известны из существующего уровня техники.

Анализ других технических решений в данной области техники, например по а.с. СССР N 1174413 и N 1574098, позволяет сделать вывод, что заявляемая шихта и способ получения материала из нее имеют изобретательский уровень, т.к. компонентный состав шихты, технологические приемы способа и их существенные отличия явным образом не следуют из известного уровня техники. Кроме того, шихта и способ являются промышленно применимыми, что вытекает из результатов экспериментальной проверки и достигаемого технического результата.

Возможность осуществления изобретения подтверждается сведениями, относящимися к компонентному и технологическому выполнению шихты и способа, результатам экспериментальной проверки и практически задачам керамического конденсаторостроения.

Предлагаемый способ осуществляется следующим образом.

Предварительно известным в керамическом производстве образом получают спеки CaTiO3 и SrTiO3. Затем перед смешиванием исходных компонентов шихты производят гидротермальную обработку оксида цинка (HnO) и борной кислоты (H3BO3), для чего требуемое количество ZnO и H3BO3 перемешивают в водной среде при температуре 80 100oC до образования однородной массы. Полученную таким образом массу высушивают до сыпучего состояния с остаточной влажностью не более 0,5% и используют в качестве легкоплавкой цинкоборатной добавки. После этого все компоненты, например CaTiO3, SrTiO3, MnCO3, Nb2O5, ZnO и H3BO3, взятые в заданном соотношении, смешивают до удельной поверхности 6000 08000 см2/г. Полученную шихту прокаливают при температуре 750 850oC до свободного содержания ZnO не более 1,5% а затем еще раз смешивают и измельчают сухим и мокрым способами до удельной поверхности не менее 10000 см2/г. Из полученной таким образом шихты известным образом, например по пленочной технологии, формуют заготовки керамических конденсаторов, которые обжигают (спекают) при температуре 1070 - 1150oC в воздушной среде.

Конкретными примерами предлагаемой шихты керамического материала являются следующие ее оптимальные составы, мас. (см. табл. 3).

Примеры реализации способа приготовления шихты приведены в табл. 1.

Свойства материала на основе предлагаемой шихты и способа подтверждаются результатами испытаний, данные которых приведены в табл. 2

Как следует из табл. 2, керамический материал на основе предлагаемой шихты и способ его получения при практически совпадающих значениях шихта керамического материала для высокочастотных   термокомпенсирующих материалов и способ получения материала   из нее, патент № 2079916 и tgшихта керамического материала для высокочастотных   термокомпенсирующих материалов и способ получения материала   из нее, патент № 2079916 с известным материалом по патенту СССР N 1441630 имеет температуру спекания ниже на 120 180oC, а электрическую прочность в 1,8 2 раза выше, при этом способ его получения в сравнении с известным по а.с. СССР N 791703 характеризуется в 3 4 раза меньшей трудоемкостью и энергозатратами.

Оптимальность состава предлагаемой шихты подтверждается тем, что при введении в шихты добавок ZnO и H3BO3 менее минимального количества 1,6 и 2,4 мас. соответственно (выход за состав 3) повышается температура спекания выше оптимальной 1150oC, а при введении этих добавок более максимального количества 3,1 и 4,3 мас. соответственно (выход за составом 1) снижается диэлектрическая проницаемость ниже допустимого значения 185.

Экспериментально установлено, что наивысший технический результат достигается при заявляемом соотношении всех компонентов шихты, и заявляемых приемах получения материала из нее.

Практическое применение материала на основе предлагаемой шихты и способа его получения позволяет повысить электропрочность и снизить температуру спекания материала и снизить энергозатраты и трудоемкость процесса его получения, а также позволяет применить в качестве конденсаторных электродов сплав Ag Pd.

В настоящее время разработан процесс получения материала и изделий и начато внедрение материала в производство.

Класс H01G4/12 керамические диэлектрики

способ изготовления сегнетоэлектрических конденсаторов -  патент 2523000 (20.07.2014)
способ спекания изделий диэлектрической керамики -  патент 2516532 (20.05.2014)
способ изготовления конденсаторов большой энергоемкости -  патент 2450381 (10.05.2012)
сегнетокерамический конденсаторный диэлектрик для изготовления керамических конденсаторов температурно-стабильной группы -  патент 2413325 (27.02.2011)
способ формирования состава твердых растворов для изделий высокочастотной и микроволновой техники (варианты) -  патент 2242442 (20.12.2004)
высокочастотный керамический материал (варианты) -  патент 2170219 (10.07.2001)
керамический материал на основе цинкзамещенного ниобата висмута -  патент 2167842 (27.05.2001)
конденсатор керамический -  патент 2140678 (27.10.1999)
способ изготовления монолитных керамических конденсаторов -  патент 2084035 (10.07.1997)
гребенчатый свч-конденсатор -  патент 2074436 (27.02.1997)

Класс C04B35/46 на основе оксидов титана или титанатов

титансодержащая добавка -  патент 2481315 (10.05.2013)
порошки -  патент 2471711 (10.01.2013)
способ получения нанокристаллических порошков и керамических материалов на основе смешанных оксидов редкоземельных элементов и металлов подгруппы ivb -  патент 2467983 (27.11.2012)
способ получения порошков фаз кислородно-октаэдрического типа -  патент 2448928 (27.04.2012)
сегнетокерамический конденсаторный диэлектрик для изготовления керамических конденсаторов температурно-стабильной группы -  патент 2413325 (27.02.2011)
шихта для получения пенокерамического материала (варианты) -  патент 2145313 (10.02.2000)
способ изготовления изделия, содержащего субоксид титана -  патент 2140406 (27.10.1999)
нагреватель для микроволновой печи и способ его изготовления -  патент 2124489 (10.01.1999)
композиционный керамический материал -  патент 2123487 (20.12.1998)
способ получения оксидтитановой керамики -  патент 2082693 (27.06.1997)
Наверх