способ получения нанокристаллических порошков и керамических материалов на основе смешанных оксидов редкоземельных элементов и металлов подгруппы ivb

Классы МПК:C04B35/46 на основе оксидов титана или титанатов
C04B35/486 тонкая керамика
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, ,
Патентообладатель(и):федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) (RU)
Приоритеты:
подача заявки:
2011-05-19
публикация патента:

Изобретение относится к получению нанокристаллических порошков смешанных оксидов редкоземельных элементов (РЗЭ) и металлов подгруппы IVB и может быть использовано для изготовления нейтронопоглощающих и теплоизолирующих материалов, твердых электролитов для высокотемпературных твердооксидных топливных элементов. Предложенный способ включает изготовление смешанного гидроксида путем соосаждения солей, фильтрацию и промывку полученного осадка, сушку с последующим прокаливанием до получения смешанного оксида, его размол, прессование и отжиг полученных компактов. Стадию прокаливания смешанного гидроксида проводят в температурном интервале 800-1200°С, а размол порошков смешанных оксидов осуществляют путем механоактивации в планетарной мельнице в течение 18-36 мин. В качестве РЗЭ предлагается использовать диспрозий, а в качестве металлов подгруппы IVB - титан, цирконий, гафний. Технический результат изобретения - повышение плотности керамических таблеток, полученных на основе нанокристаллических порошков, до 7,5 г/см3 и выше. 2 з.п. ф-лы, 13 пр., 2 табл.

Формула изобретения

1. Способ получения нанокристаллических порошков и керамических материалов на основе смешанных оксидов редкоземельных элементов и металлов подгруппы IVB, включающий изготовление смешанного гидроксида путем соосаждения солей, фильтрацию и промывку полученного осадка, сушку с последующим прокаливанием до получения смешанного оксида, его размол, прессование и отжиг полученных, компактов, отличающийся тем, что стадию прокаливания смешанного гидроксида проводят в температурном интервале 800-1200°С, а размол порошков смешанных оксидов осуществляют путем механоактивации в планетарной мельнице в течение 18-36 мин.

2. Способ по п.1, отличающийся тем, что в качестве редкоземельного элемента используют диспрозий.

3. Способ по п.1, отличающийся тем, что в качестве металлов подгруппы IVB используются титан, цирконий или гафний.

Описание изобретения к патенту

Предлагаемое изобретение относится к технологии неорганических материалов, в частности к способам получения нанокристаллических порошков и керамики на основе веществ с общей формулой Ln 2+xM2-xO7-x/2, где Ln - редкоземельный элемент (РЗЭ), M - металл подгруппы IVB (Ti, Zr, Hf), и может быть использовано для изготовления нейтронопоглощающих [1] и теплоизолирующих [2] материалов, твердых электролитов для высокотемпературных твердооксидных топливных элементов [3].

Известен способ получения поликристаллического нейтронопоглощающего материала на основе гафната диспрозия [4], по которому оксид диспрозия (65-85 мас.%) смешивают с диоксидом гафния и далее полученную смесь в виде компактированного образца спекают в интервале температур 1500-2000°C. В связи с использованием процесса твердофазного синтеза недостатком данного способа является многофазность полученного материала из-за возможности наличия в нем остатков непрореагировавших исходных веществ (в основном оксида диспрозия).

Известен также способ получения поглотителя нейтронов на основе гафната диспрозия [5], согласно которому смесь оксидов диспрозия (12-85 мас.%), гафния (0,5-87 мас.%) и ниобия (0,5-20 мас.%) расплавляют методом высокочастотного индукционного плавления в холодном тигле. Быстрое охлаждение расплава, после окончания синтеза, приводит к получению однофазного гафната диспрозия, имеющего гранецентрированную кубическую (ГЦК) структуру флюорита. Недостатком данного способа является высокая температура синтеза (свыше 2300°C), что приводит к увеличению эксплуатационных расходов из-за использования специального комплекса аппаратуры (установки «Кристалл-401») и дополнительного реагента (оксида ниобия, положительно влияющего на получаемую кристаллическую структуру), а также ограниченные эксплуатационные возможности получаемого гафната диспрозия, а именно его использование только в виде порошка. Это объясняется тем, что невозможно получить прочные и плотные изделия (таблетки) из материала с кубической структурой типа флюорита, который был синтезирован в расплаве при температуре, значительно превышающей температуру спекания таблеток.

Наиболее эффективным способом получения нанокристаллических порошов смешанных оксидов, содержащих несколько катионов, является химический метод, основанный на соосаждении смеси солей этих металлов путем нейтрализации щелочным агентом, фильтрации и промывке полученного осадка смешанного гидроксида, его сушке и дальнейшем прокаливании до соответствующего оксида [6]. Данный метод позволяет существенно значительно снизить температуру отжига, получая при этом однофазные нанокристаллические порошки в широком диапазоне размеров кристаллитов (от 3-5 до 100 нм).

Наиболее близким к предлагаемому изобретению и принятому в качестве прототипа является способ получения порошков состава Ln2Zr2O7 (где Ln=Gd, Nd, Sm), описанный в работе [7], согласно которому раствор, полученный в результате растворения солей Ln(NO3)3 ·6H2O и ZrOCl2·8H2 O, медленно добавляют к раствору аммиака (NH4OH; рН 12,5). Полученный осадок фильтруют, промывают, сушат при 120°C в течение 12 ч и далее термообрабатывают при 500°C в течение 10 ч. Подготовленный таким образом порошок прокаливают при 1600°C в течение 24 ч. Результирующий порошок далее размалывают в шаровой мельнице в этаноле в течение 24 ч. Прессование таблеток осуществляют методом горячего прессования при давлении 50 МПа в токе аргона при 1500°C в течение 0,5 ч. В результате были получены таблетки с плотностью от 6,0 до 6,7 г/см3. Главным недостатком описанного способа является образование крупнокристаллических порошков с размером области когерентного рассеяния (ОКР) более 100 нм и высокой степенью агрегации (размер агрегатов до 10-15 мкм), что не позволяет получать плотные керамические изделия.

Технический результат, заключающийся в получении нанокристаллических порошков смешанных оксидов РЗЭ и металла подгруппы IVB с повышением плотности керамических таблеток, полученных на их основе, до 7,5 г/см3 и выше, достигается тем, что в известном способе, включающем изготовление смешанного гидроксида путем соосаждения солей, фильтрацию и промывку полученного осадка, сушку с последующим прокаливанием до получения смешанного оксида, его размол, прессование и отжиг полученных компактов, стадию прокаливания смешанного гидроксида проводят в температурном интервале 800-1200°C, а размол порошков смешанных оксидов осуществляют путем механоактивации в планетарной мельнице в течение 18-36 мин. В частном случае предлагается в качестве РЗЭ использовать диспрозий, а в качестве металлов подгруппы IVB - титан, цирконий, гафний.

Использование прокаливания рентгеноаморфного смешанного гидроксида РЗЭ и металла подгруппы IVB в интервале температур 800-1200°C приводит к образованию нанокристаллических порошков Ln2+xM2-xO7-x/2. Использование температуры менее 800°C приводит к сохранению рентгеноаморфного состояния порошка, который содержит значительное количество остаточной структурно-связанной воды (в виде гидроксильных групп). Использование температуры более 1200°C приводит к получению крупнокристаллических порошков смешанных оксидов РЗЭ и металла подгруппы IVB с размером кристаллитов более 100 нм.

Использование механоактивации порошков в планетарной мельнице приводит не только к размолу агрегатов и уменьшению их размера, но также к уменьшению размера кристаллитов и росту микронапряжений кристаллической решетки и, соответственно, к существенному росту плотности получаемых керамических таблеток после их прессования и отжига. Используется механоактивация в планетарной мельнице (центробежное ускорение мелющих тел порядка 1000 м2/с) в течение 18-36 мин. Применение механоактивации в течение менее 18 мин не позволяет повысить плотность таблеток до 7,5 г/см3 и выше. Воздействие более 36 мин практически не приводит к увеличению плотности таблеток по сравнению с образцами, полученными при меньших временах.

Данный способ получения был реализован с использованием высокотемпературной печи «Nabertherm НТ 08/18» и планетарной мельницы «Pulverisette 7 premium line. В качестве исходных веществ были использованы: тетрабутоксититан Ti(OC4 H9)4, оксихлориды циркония ZrOCl2 ·8H2O и гафния HfOCl2·8H 2O, нитрат диспрозия Dy(NO3)3·5H 2O, 25% водный раствор аммиака NH4OH, дистиллированная вода.

Пример 1. 20,9 г Dy(NO3) 3·5H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц. 27 мл 25% NH4OH доводили до 200 мл дистиллированной водой. При интенсивном перемешивании в раствор аммиака дозировали полученный раствор Dy(NO3) 3 и 8,1 г Ti(OC4H9)4, получая вязкую суспензию белого цвета с pH 10,42. Полученную суспензию фильтровали и далее осадок смешанного гидроксида диспрозия и титана промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок сушили при температуре 90°C в течение 12 ч. Высушенный порошок прокаливали в муфельной печи на воздухе при 800°C в течение 3 ч. Полученный порошок представлял собой однофазный нанокристаллический порошок Dy 2TiO5 с размером кристаллитов 20 нм, имеющего ГЦК структуру.

Порошок Dy2TiO5 механоактивировали в течение 24 мин и далее прессовали (при давлении 180 МПа) в таблетку диаметром 12,1 мм и высотой 15,5 мм, имеющую плотность 4,28 г/см3. Таблетку прокаливали при температуре 1550°C в течение 4 ч. Полученная после прокаливания таблетка была светло-кремового цвета, однородной, без трещин, имела диаметр 10,0 мм, высоту 13,6 мм и плотность 7,50 г/см 3. Рентгенографический анализ показал, что таблетка состояла из однофазного нанокристаллического Dy2TiO5 .

Пример 2. 21,7 г Dy(NO3)3 ·5H2O и 16,0 г ZrOCl2·8H 2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц. 36 мл 25% NH4OH доводили до 200 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Gd и Zr дозировали в раствор аммиака, получая вязкую суспензию белого цвета с pH 10,08. Полученную суспензию фильтровали и далее осадок смешанного гидроксида диспрозия и циркония промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок сушили при температуре 90°C в течение 12 ч. Высушенный порошок прокаливали в муфельной печи на воздухе при 800°C в течение 3 ч. Полученный порошок представлял собой однофазный нанокристаллический порошок Dy2Zr2O 7 (размер кристаллитов 11 нм), имеющий ГЦК структуру флюорита.

Порошок Dy2Zr2O7 механоактивировали в течение 18 мин и далее прессовали (при давлении 180 МПа) в таблетку диаметром 12,1 мм и высотой 15,5 мм, имеющую плотность 4,68 г/см3. Таблетку прокаливали при температуре 1550°C в течение 4 ч. Полученная после прокаливания таблетка была светло-кремового цвета, однородной, без трещин, имела диаметр 10,0 мм, высоту 13,6 мм и плотность 7,70 г/см 3.

Рентгенографический анализ показал, что таблетка состояла из однофазного нанокристаллического Dy 2Zr2O7 (размер кристаллитов 100 нм), имеющего ГЦК структуру.

Пример 3. 21,8 г Dy(NO 3)3·5H2O и 10,3 г HfOCl 2·8H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц. 35 мл 25% NH4OH доводили до 150 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Dy и Hf дозировали в раствор аммиака, получая вязкую суспензию белого цвета с pH 10,36. Полученную суспензию фильтровали и далее осадок смешанного гидроксида диспрозия и гафния промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок сушили при температуре 90°C в течение 12 ч. Высушенный порошок прокаливали в муфельной печи на воздухе при 800°C в течение 3 ч. Полученный порошок представлял собой однофазный нанокристаллический порошок Dy2HfO 5 (размер кристаллитов 8 нм), имеющий ГЦК структуру флюорита.

Порошок Dy2HfO5 механоактивировали в течение 33 мин и далее прессовали (при давлении 180 МПа) в таблетку диаметром 12,1 мм и высотой 12,0 мм, имеющую плотность 4,71 г/см3. Таблетку прокаливали при температуре 1550°C в течение 4 ч. Полученная после прокаливания таблетка была светло-кремового цвета, однородной, без трещин, имела диаметр 9,6 мм, высоту 9,4 мм и плотность 8,00 г/см3. Рентгенографический анализ показал, что таблетка состояла из однофазного нанокристаллического Dy2HfO5 (размер кристаллитов 85 нм), имеющего ГЦК структуру.

Пример 4. Нанокристаллический порошок Dy2HfO5 (размер кристаллитов 8 нм), полученный в примере 3, прессовали (при давлении 180 МПа) без предварительной механоактивации. Исходная таблетка имела диаметр 12,2 мм, высоту 11,6 мм и плотность 5,10 г/см3. Как и в случае примера 1 таблетку прокаливали при температуре 1550°C в течение 4 ч.

Полученная после прокаливания таблетка была светло-кремового цвета, однородной, без трещин, имела диаметр 11,1 мм, высоту 10,5 мм и плотность 6,57 г/см3. Рентгенографический анализ показал, что таблетка состояла из однофазного нанокристаллического Dy2HfO5 (размер кристаллитов 113 нм), имеющего ГЦК структуру.

Примеры 5-10. Высушенный порошок смешанного гидроксида диспрозия и гафния, полученного в примере 1, прокаливали в муфельной печи на воздухе при различных температурах в течение 3 ч. Полученные при температуре 800-1600°C порошки представляли собой однофазный порошок Dy2HfO5 , имеющий ГЦК структуру флюорита, с размером кристаллитов, зависящим от температуры обработки (табл.1). Из табл.1 видно, что увеличение температуры прокаливания более 1200°C приводит к резкому росту размера кристаллитов и получению крупнокристаллических порошков Dy2HfO5.

Примеры 11-13. Нанокристаллический порошок Dy2HfO5 (размер кристаллитов 8 нм), полученный в примере № 3, механоактивировали в течение различного времени и далее прессовали (при давлении 180 МПа) в таблетки, которые прокаливали при температуре 1550°C в течение 4 ч. Полученные после прокаливания таблетки были светло-кремового цвета, однородные, без трещин и имели различную плотность (табл.2). Рентгенографический анализ показал, что таблетки состояли из однофазного Dy2HfO 5, имеющего ГЦК структуру.

Таким образом, приведенные примеры показывают, что прокаливание смешанного гидроксида, полученного методом соосаждения солей диспрозия и гафния, в температурном интервале 800-1200°C позволяет получать однофазные нанокристаллические порошки оксидов РЗЭ и металла подгруппы IVB, механоактивация которых в течение 18-36 мин перед прессованием и последующим отжигом компактов позволяет существенно повысить плотность получаемых таблеток.

СПИСОК ЛИТЕРАТУРЫ

1. Risovany V.D., Zakharov A.V., Muraleva E.M., et al. Dysprosium hafnate as absorbing material for control rods // J. Nucl. Mater., 2006, v.355, № 1, p.163-170.

2. Xu Q., Pan W., Wang J., et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings // J. Amer. Ceram. Soc, 2006, v.89, № 1, p.340-342.

3. Abrantes J.C.C., Levchenko A.V, Shlyakhtina A.V., et al. Ionic and electronic conductivity of Yb2+xTi2-xO7-x/2 materials // Solid State Ionics, 2007, v.177, № 19-25, p.1785-1788.

4. Патент США № 4992225, кл. F27B 9/04, 1991.

5. Патент РФ № 2124240, кл. G21C 7/24, 1998.

6. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. М.: Академкнига, 2006, 309 с.

7. Wu J., Wei X., Padture N.P., et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications // J. Amer. Ceram. Soc, 2002, v.85, № 12, p.3031-3035.

Таблица 1
№ примераТемпература прокаливания, °C Размер кристаллитов, нм Параметры решетки, Å Микронапряжения, %
5400 аморфный- -
6 600 аморфный- -
3 800 85,258(2) 1,6
7 1000 185,2570(6) 0,6
81200 625,2602(2) 0,3
91400 2705,2604(1) 0,1
101600 3305,2622(1) <0,1

Таблица 2
№ примера11 12 13
Время механоактивации, мин 1536 48
Плотность таблеток, г/см3 7,307,96 7,97

Класс C04B35/46 на основе оксидов титана или титанатов

титансодержащая добавка -  патент 2481315 (10.05.2013)
порошки -  патент 2471711 (10.01.2013)
способ получения порошков фаз кислородно-октаэдрического типа -  патент 2448928 (27.04.2012)
сегнетокерамический конденсаторный диэлектрик для изготовления керамических конденсаторов температурно-стабильной группы -  патент 2413325 (27.02.2011)
шихта для получения пенокерамического материала (варианты) -  патент 2145313 (10.02.2000)
способ изготовления изделия, содержащего субоксид титана -  патент 2140406 (27.10.1999)
нагреватель для микроволновой печи и способ его изготовления -  патент 2124489 (10.01.1999)
композиционный керамический материал -  патент 2123487 (20.12.1998)
способ получения оксидтитановой керамики -  патент 2082693 (27.06.1997)
шихта керамического материала для высокочастотных термокомпенсирующих материалов и способ получения материала из нее -  патент 2079916 (20.05.1997)

Класс C04B35/486 тонкая керамика

способ изготовления керамики на основе диоксида циркония -  патент 2513973 (20.04.2014)
способ получения циркониевой керамики -  патент 2506247 (10.02.2014)
способ изготовления керамических изделий на основе диоксида циркония -  патент 2494077 (27.09.2013)
способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия -  патент 2492157 (10.09.2013)
способ изготовления заготовок керамических изделий -  патент 2491253 (27.08.2013)
способ получения пористого керамического материала -  патент 2476406 (27.02.2013)
шихта для керамического материала на основе оксидов циркония и алюминия и нитрида циркония -  патент 2455261 (10.07.2012)
оксид циркония и способ его получения -  патент 2442752 (20.02.2012)
высокочистые порошки и изготовленные из них покрытия -  патент 2436752 (20.12.2011)
способ получения микро- и нанопористой керамики на основе диоксида циркония -  патент 2417967 (10.05.2011)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх