способ определения энергии активации термоокислительной деструкции полимеров и полимерных материалов

Классы МПК:G01N25/28 с непосредственным измерением роста температуры газов в течение процесса горения 
G01N7/00 Анализ материалов путем измерения давления или объема газа или паров
G01N33/44 смол; пластиков; резин; кожи 
Автор(ы):, ,
Патентообладатель(и):Научно-исследовательский институт электромеханики
Приоритеты:
подача заявки:
1993-09-16
публикация патента:

Использование: испытания полимеров и полимерных материалов, в частности определение величины эффективной энергии активации Е процесса термоокислительной деструкции полимеров. Сущность изобретения: способ включает термообработку образца и расчет величины энергии активации, причем термообработку образца осуществляют посредством сжигания со скоростью 0,2-0,4 мг/мин при температуре 1000oС и начальной массе образца 2-4 мг. Определяют элементный состав элементарного звена полимера и полимерного материала, а величину энергии активации рассчитывают из соотношения: E= способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855C,N.../способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855H,O, кДж/моль, где способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855С, N... - сумма атомов углерода, азота и других элементов, кроме водорода и кислорода; SН, О. . . - сумма атомов водорода и кислорода; К - коэффициент, равный 146 кДж/моль, соответствующий энергии распада гидропероксидных радикалов. 1 табл.
Рисунок 1

Формула изобретения

Способ определения энергии активации термоокислительной деструкции полимеров и полимерных материалов, включающий термообработку образца и расчет величины энергии активации, отличающийся тем, что термообработку образца осуществляют посредством сжигания со скоростью 0,2 0,4 мг/мин при температуре 1000oC и начальной массой образца 2 5 мг, определяют элементный состав элементарного звена полимера и полимерного материала, а величину энергии активации рассчитывают из соотношения

способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855

где C, N. сумма атомов углерода, азота и других элементов, кроме водорода и кислорода;

H, O. сумма атомов кислорода и водорода в элементарном звене полимера;

K коэффициент, равный 146 кДж/моль и соответствующий энергии распада гидроперексидных радикалов.

Описание изобретения к патенту

Изобретение относится к испытательной технике, а именно к испытаниям полимеров и полимерных материалов, в частности к определению величины эффективной энергии активации Е процесса термоокислительной деструкции полимеров.

Известен способ определения энергии активации по результатам изотермического нагревания. Согласно этому способу образцы материалов кратковременно, например 1, 3, 5 ч, нагревают при трех температурах. Затем замеряют изменение массы, либо другого параметра, характеризующего деструкцию полимера, а величину Е рассчитывают по тангенсу (b) угла прямой lgk-1/T из соотношения b E/4,57 ккал/моль, k изменение параметра [1,2,3]

Недостатком этого способа является невоспроизводимость за счет вклада остаточных летучих в полимере и за счет произвольно выбираемой температуры эксперимента.

Этот недостаток отсутствует у другого способа определения Е, согласно которому 30-50 образцов полимерного материала длительно нагревают (500-5000 ч) при трех разных температурах до момента практической непригодности. Срок службы (L) при заданной температуре фиксируют по изменению до заданного уровня какого-либо критического параметра, например, пробивного напряжения. Далее величину Е рассчитывают по тангенсу (b) угла наклона прямой lgL-1/T из соотношения b E/4,57 ккал/моль [4]

Но этот метод очень трудоемок, длителен, дорог.

Менее трудоемким, чем предыдущий метод, и наиболее надежным является способ определения энергии активации термоокислительной деструкции полимеров по результатам неизотермического нагревания, когда образцы нагревают, используя специальное оборудование, например, дериватограф, дифференциально-сканирующий калориметр и т. д. постепенно поднимая температуру с заданной скоростью. Процесс проводят при 3-х, 4-х скоростях нагревания, при этом автоматически регистрируют изменение массы. Далее строят графики зависимости логарифма скорости нагревания lgV от обратной абсолютной температуры 1/T для определенного уровня потери массы (10,20,30,90%). Энергию активации рассчитывают по тангенсу (b) угла наклона прямой lgV-1/T из соотношения:

b -0,457 E/R ккал/моль,

где R универсальная газовая постоянная.

Получают 9 значений Е, которые усредняют. Продолжительность эксперимента и обработка данных 20 ч [5]

Метод требует специального дорогостоящего оборудования, значительного расхода электроэнергии. Он достаточно длителен. Обработка результатов трудоемка.

Цель изобретения снижение расхода электроэнергии, упрощение и ускорение способа определения эффективной энергии активации Е, что особенно важно при использовании величины E для прогнозирования эксплуатационных характеристик полимеров и полимерных материалов, в частности, температуры эксплуатации при заданном сроке службы и, наоборот, срока службы при заданной температуре эксплуатации.

Цель достигается тем, что определяют элементный состав элементарного звена полимера или полимерного материала посредством сжигания микрообразца (3 мг) или любым другим способом, а затем рассчитывают величину Е из соотношения:

способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855

где способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855 C,N сумма атомов углерода, азота и других элементов, кроме водорода и кислорода;

способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855 H,O сумма атомов кислорода и водорода в элементарном звене полимера;

K коэффициент, равный 146 кДж/моль и соответствующий энергии распада гидропероксидных радикалов.

Изобретение базируется на экспериментально найденной зависимости между энергией активации термоокислительной деструкции полимеров и относительным содержанием атомов элементов в элементарном звене полимера. В процессе термоокислительной деструкции, протекающей по радикально-цепному механизму, ведущую роль играют гидропероксидные радикалы, в образовании и распаде которых активное участие принимают атомы водорода и кислорода. Содержание атомов этих элементов относительно других атомов в элементарном звене полимера указывает на степень активации процесса термоокислительной деструкции. Чем выше содержание атомов водорода и кислорода, активнее процесс, тем ниже величина Е.

Для обеспечения воспроизводимости получаемых результатов образец в кварцевой трубке вводится в течение 10 мин в предварительно нагретую трубчатую печь до 1000oС, т.е. с условной скоростью нагревания образца 100 град/мин, что соответствует скорости сжигания 0,2-0,4 мг/мин.

Масса образца обычно составляет 3способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 20698551 мг для обеспечения полноты равномерного сгорания в указанных условиях. Масса менее 2 мг увеличивает погрешность. Масса более 4-5 мг требует большей продолжительности эксперимента.

Пример. Измельченная пленка полиэтилена массой 3,535 мг подвергается сжиганию, после чего определяется привес поглотителей, который составляет по воде H2O 4,530 мг, по углекислому газу CO2 11,180 мг. Далее определение водорода и углерода определяется из соотношений:

способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855

где 0,119=2,016способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855/18,016способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855; 0,2729=12,01(MC/44,01способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855.

Для нахождения атомных множителей сначала определяют атомные факторы делением полученных значений 14,3% и 86,3% на атомные массы определяемых элементов: 14,3: 1=14,3 и 86,3:12=7,19, затем определяют атомные множители: для водорода 14,3/7,19= 2 и для углерода 7,19/7,19=1, т.е. в элементарном звене полимера соотношение атомов водорода к атомам углерода составляет 2:1. Энергия активации термоокислительной деструкции определяется просто: E = способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855 C,N/способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855 H,O. 146 кДж/моль, в данном случае Е=(1/2)способ определения энергии активации термоокислительной   деструкции полимеров и полимерных материалов, патент № 2069855146 кДж/моль 73 кДж/моль.

Продолжительность эксперимента и обработка результатов не более одного часа.

Для подтверждения правомерности предлагаемого способа определения эффективной энергии активации Е были проведены две серии опытов: неизотермический термогравиметрический анализ при четырех скоростях нагревания на венгерском дериватографе фирмы МОМ с последующей обработкой данных, как дано в прототипе (способ 1) и элементный анализ посредством сжигания образца с последующим расчетом Е согласно предлагаемому способу (способ 2). Результаты опытов приведены в таблице. Приведенные данные показывают вполне удовлетворительное совпадение.

Метод прост, расход электроэнергии сокращается в 40 раз, временные затраты уменьшаются в 20 раз.

Класс G01N25/28 с непосредственным измерением роста температуры газов в течение процесса горения 

Класс G01N7/00 Анализ материалов путем измерения давления или объема газа или паров

способ по выделению газа для инспектирования поверхности с покрытием -  патент 2523773 (20.07.2014)
способ определения давления газа в индивидуальных микросферах и устройство для его осуществления -  патент 2522792 (20.07.2014)
система автоматического управления и регулирования промышленной и экологической безопасностью выбросов высокотемпературных паров и газов с дисперсным материалом (сажей) в аппаратах после предохранительных клапанов в аварийной ситуации -  патент 2518868 (10.06.2014)
способ определения интенсивности выделения газов легче воздуха с поверхности пористых объектов и устройство для его осуществления -  патент 2502977 (27.12.2013)
способ коррекции измеренных концентраций компонентов газа в буровом растворе -  патент 2501947 (20.12.2013)
устройство для определения количества газов в жидкости -  патент 2499247 (20.11.2013)
лабораторный комплекс для отбора и газохроматографического анализа проб воздуха -  патент 2497097 (27.10.2013)
установка для определения активных объемов вакуумируемой части изделия -  патент 2495401 (10.10.2013)
способ определения концентрации газа в жидкости -  патент 2488092 (20.07.2013)
система автоматического управления и регулирования промышленной и экологической безопасностью выбросов вредных паров и газов кислого и щелочного характера после предохранительных клапанов в аварийной ситуации -  патент 2485479 (20.06.2013)

Класс G01N33/44 смол; пластиков; резин; кожи 

способ определения марки вулканизированной резины -  патент 2486513 (27.06.2013)
способ оценки концентрации смолоподобных веществ в суспензии -  патент 2472135 (10.01.2013)
устройство для определения физико-механических характеристик кожи и подобных ей мягких композитов -  патент 2460996 (10.09.2012)
способ оценки влияния нанокомпонентов на санитарно-химические свойства полимерных материалов -  патент 2458345 (10.08.2012)
способ распознавания натуральной кожи и кожеподобных материалов -  патент 2454664 (27.06.2012)
способ создания хрупкого покрытия на поверхности изделий из светостабилизированного полиэтилена -  патент 2454663 (27.06.2012)
способ определения характеристического параметра образца пластмассы, армированной углеродным волокном -  патент 2449271 (27.04.2012)
способ определения межструктурных расстояний в коллагене -  патент 2422823 (27.06.2011)
способ и набор для иммуноферментного определения функциональной активности компонента c1q комплемента человека -  патент 2413224 (27.02.2011)
способ оценки усиливающих свойств сажи в резинах -  патент 2409815 (20.01.2011)
Наверх