асфальтобетонная смесь

Классы МПК:C04B26/26 битуминозные материалы, например деготь, пек
Автор(ы):, , ,
Патентообладатель(и):Кейльман Владимир Александрович,
Матуа Вахтанг Парменович,
Илиополов Сергей Константинович,
Мардиросова Изабелла Вартановна
Приоритеты:
подача заявки:
1991-10-15
публикация патента:

Использование: при устройстве покрытий автомобильных дорог. Сущность изобретения:асфальтобетонная смесь содержит, мас.%: отход распиловки известняков-ракушечников фракции менее 5 мм 60,0 - 65,0%, фракции 5 - 15 мм 27,9 - 29,85, вторичный отгон жирового гудрона 0,10 - 0,15, высушенный кремнегель - отход сернокислотной переработки природных фосфористов при получении фосфорной кислоты и концентрированных фосфатных удобрений 1,5 - 3,5, битум 5,5 - 6,5. Предел прочности при сжатии: при 20°С 4,86 - 5,52 МПа, при 50°С 3,78 - 4,16 МПа, коэффициент водостойкости 0,90 - 0,97. 7 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

АСФАЛЬТОБЕТОННАЯ СМЕСЬ, включающая отходы распиловки известняков-ракушечников фракции менее 5 мм и фракции 5-15 мм, анионное поверхностно-активное вещество и битум, отличающаяся тем, что содержит в качестве анионного поверхностно-активного вещества вторичный отгон жирового гудрона и дополнительно высушенный кремнегель-отход сернокислотной переработки природных фосфоритов при получении фосфорной кислоты и концентрированных фосфатных удобрений при следующем соотношении компонентов, мас.

Отходы распиловки известняков-ракушечников:

Фракции менее 5 мм 60,0 65,0

Фракции 5-15 мм 27,9 29,85

Вторичный отгон жирового гудрона 0,10 0,15

Указанный высушенный кремнегель 1,5 3,5

Битум 5,5 6,5

Описание изобретения к патенту

Изобретение относится к области дорожно-строительных материалов и может быть использовано при устройстве покрытий автомобильных дорог II-IV категорий в IV-V климатических зонах.

При строительстве автомобильных дорог широко применяются асфальтобетонные смеси, приготовленные в соответствии с ГОСТ 9128-84.

Основной недостаток известных асфальтобетонных смесей невысокая тепло- и сдвигоустойчивость, что в большой степени оказывается на деформативных и прочностных свойствах дорожных покрытий, которыми в основном определяется работоспособность покрытия.

Известна асфальтобетонная смесь, представляющая собой смесь минерального наполнителя, шлакового минерального порошка и битума [1]

Асфальтобетонные смеси, приготовленные с использованием указанных материалов, отличаются хорошим показателем коэффициента водостойкости Кводост. 0,97.

Недостаток этой смеси низкая теплоустойчивость. Предел прочности при сжатии при температуре 50оС (Ксж 50оС) составляет всего 1,45 МПа. По требованиям ГОСТ 9128-84 этот показатель должен быть не менее 1,60 МПа. Низкое значение Ксж 50оС приводит к снижению показателей сдвигоустойчивости покрытия и не обеспечивает требуемую его работоспособность.

Наиболее близкой к предложенному изобретению по технической сущности является горячая мелкозернистая асфальтобетонная смесь [2] включающая битум и минеральную часть, составленную из известнякового материала при следующем соотношении компонентов, мас.

Известняк-ракушечник: Фракция 0-5 мм 60-65 Фракция 5-15 мм 27-32 Битум вязкий 7-8

Недостатки указанной смеси низкий коэффициент водостойкости и показатель прочности при 50оС, повышенная способность к водонасыщению и старению и как следствие увеличенный расход органических вяжущих по сравнению с потребностью таких же вяжущих для битумоминеральных смесей, приготавливаемых со стандартными минеральными материалами.

Недостатки смесей из пористых материалов вытекают из того, что при взаимодействии органического вяжущего битума с поверхностью известняков-ракушечников, являющихся высокопористым материалом, происходит расслоение структуры битумов. Внутрь минеральных материалов по порам избирательно проникают молекулы масел и смол частично, а в поверхностном слое концентрируются молекулы и агрегаты асфальтенов. Образующийся на поверхности пористого минерального материала слой битумной пленки, состоящей в основном из асфальтенов, становится более жестким, а, следовательно, более хрупким, что ускоряет процесс старения асфальтобетонных покрытий. Поэтому в практике дорожного строительства при использовании пористых материалов, обработанных битумами, увеличивают количество органического вяжущего, что влечет за собой снижение показателя прочности при 50оС.

Цель изобретения повышение водостойкости и показателя прочности при 50оС асфальтобетонных смесей и снижение дефицитных органических вяжущих битумов.

Поставленная цель достигается тем, что асфальтобетонная смесь, содержащая в качестве минерального материала отходы распиловки известняков-ракушечников и связующего битума, содержит дополнительно в качестве активатора минерального материала высушенный кремнегель отход сернокислой переработки природных фосфоритов, при получении фосфорной кислоты и концентрированных фосфатных удобрений и в качестве гидрофобизатора пористого материала основных пород вторичный отгон жирового гудрона (отхода масложирового производства), при следующем соотношении компонентов, мас.

Отход распиловки известняка-ракушечника, Фракция 0-5 мм 60,0-65,0 Фракция 5-15 мм 27,9-29,85 Высушенный крем- негель отход сер- нокислой перера- ботки природных фосфоритов при по- лучении фосфорной кислоты и концентри- рованных фосфатных удобрений 1,5-3,5 Вторичный отгон жирового гудрона 0,10-0,15 Битум 5,5-6,5

Введение добавки кремнегеля (отход переработки фосфоритов) способствует образованию более плотной структуры асфальтобетона, с частично замкнутыми порами за счет новообразований, имеющих место в поверхностном слое пористого известняка-ракушечника при взаимодействии с кремнегелем. Образующиеся при этом нерастворимые фториды и алюмосиликаты кальция на поверхности известняка-ракушечника, увеличивая его прочность, будут способствовать повышению водостойкости асфальтобетонной смеси, снижению расслоения структуры битума и уменьшению проникновения масел и смол внутрь минерального материала. Поверхностная пленка битума становится более пластичной, замедляя процессы старения смеси.

Вторичный отгон жирового гудрона, являясь гидрофобизатором, замеряет старение битумного вяжущего, способствуя более медленному окислению масел и смол в асфальтобетоне, продлевая тем самым срок его службы.

Использование кремнегеля (отход переработки фосфоритов) и вторичного отгона жирового гудрона позволяет сократить расход битумного вяжущего на 10-15% что способствует увеличению теплоустойчивости и сдвигоустойчивости смеси.

Отходы распиловки известняков-ракушечников образуются в карьерах при распиловке известняково-ракушечниковой породы на стеновые блоки. При этом образуется до 40% отходов.

Химический состав и физико-механические показатели средних проб отходов распиловки известняков-ракушечников приведены в табл.1-3.

Физико-механические показатели характеризуют отходы распиловки как пористые материалы с пределом прочности при сжатии кубика с ребром 5 см до 10 МПа. По зерновому составу фракция 0-5 мм на 50% состоит из частиц менее 0,315 мм, в том числе частиц менее 0,071 мм содержится до 30%

Кремнегель является отходом сернокислой переработки природных фосфоритов (апатитов) при получении фосфорной кислоты, фосфата аммония и других концентрированных фосфатных удобрений. В настоящей работе использовался кремнегель Невинномысского химического комбината "Азот".

Содержание воды в использованном кремнегеле составило 27% кремнефтористоводородной кислоты 0,7 08% удельная поверхность сухого материала 15000 см2/г (табл.4). Через сито 0,071 мм проходит 86,0% материала.

Химический состав средней пробы высушенного кремнегеля представлен в табл.5, а физико-механические свойства в табл.6.

Вторичный отгон жирового гудрона отход производства на масложирокомбинатах при дистилляции жировых кислот содержит жиры, глицирин, полимеры и т.п. Температура плавления (размягчения) около 60оС, температура горения (воспламенения) 280-300оС, число омыления 211 мг КОН/г, кислотное число 3,57 мг КОН/г, содержание жирных кислот 86,4% Нормативных документов на этот отход не имеется.

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемая асфальтобетонная смесь отличается введением новых компонентов, а именно кремнегеля отход переработки фосфоритов и вторичного отгона жировых гудронов. Следовательно, заявляемое техническое решение соответствует критерию "новизна".

Анализ известных технических решений показал, что применение в составе асфальтобетонных смесей некоторых гидрофобизаторов и активаторов известны. Однако их применение в смесях в сочетании с пористыми известняками-ракушечниками не обеспечивает смесям такие свойства, которые они проявляют в заявленном решении, а именно, значительное увеличение коэффициента водостойкости и теплоустойчивости и как следствие повышение долговечности покрытия при меньшем расходе органического вяжущего. Таким образом, данный состав компонентов придает асфальтобетонной смеси новые свойства, что позволяет сделать вывод о соответствии заявляемого решения критерию "существенные отличия".

Для экспериментальной проверки заявляемого состава были подготовлены 5 вариантов составов смесей ингредиентов, из которых состав 3 является оптимальным (табл.7).

В качестве минерального материала использовали отходы распиловки известняка-ракушечника, в качестве вяжущего битум БНД 60/90, в качестве ПАВ гидрофобизатора вторичный отгон жирового гудрона и в качестве активатора высушенный кремнегель отход сернокислотной переработки природных фосфоритов при получении фосфорной кислоты и концентрированных фосфатных удобрений.

Смеси получали следующим образом. Сначала в мешалку принудительного действия подавали известняк-ракушечник фракции 5-15 мм, после чего вводился битум (предварительно приготовленный с добавками отхода вторичного жирового гудрона) в количестве 40-45% от общей его массы на замес. Смесь перемешивали в течение 20 с. Затем в мешалку подавали известняк-ракушечник фракции 0-5 мм, высушенный кремнегель и остальное количество битума с добавкой вторичного отгона жирового гудрона. Перемешивание смеси производилось в течение 45 с. Образцы из асфальтобетонной смеси формовали и испытывали по ГОСТ 12801-84. Результаты сравнительных испытаний сведены в табл.7.

Из табл. 7 следует, что асфальтобетонная смесь предлагаемого состава обладает по сравнению с прототипом, значительно более высоким коэффициентом водостойкости Кводост. 0,90-0,95, более высокими значениями Ксж 50оС 3,78-4,16 МПа, т.е. более высокой теплоустойчивостью.

Использование предлагаемого изобретения позволит:

повысить качество асфальтобетонных покрытий за счет повышения коэффициента водостойкости и показателя сопротивления сжатию при повышенных температурах, что особенно важно для южных районов IV и V климатических зон;

расширить сырьвую базу минеральных материалов за счет использования отходов распиловки известняков-ракушечни- ков и других отходов производства;

способствовать охране окружающей среды от отходов производства.

Класс C04B26/26 битуминозные материалы, например деготь, пек

высоконаполненный композиционный материал -  патент 2525074 (10.08.2014)
ресурсосберегающая щебеночно-мастичная смесь для строительства и ремонта дорожных покрытий -  патент 2524081 (27.07.2014)
асфальтобетонная смесь -  патент 2522497 (20.07.2014)
асфальтобетонная смесь на наномодифицированном вяжущем -  патент 2521988 (10.07.2014)
способ приготовления асфальтобетонной смеси -  патент 2520256 (20.06.2014)
асфальтобетонная смесь -  патент 2515840 (20.05.2014)
способ приготовления асфальтобетонной смеси -  патент 2515652 (20.05.2014)
минеральный порошок для асфальтобетонной смеси -  патент 2515277 (10.05.2014)
минеральный порошок -  патент 2515274 (10.05.2014)
минеральный порошок -  патент 2515239 (10.05.2014)
Наверх