способ получения материала из карбида кремния

Классы МПК:C04B35/56 карбидов
Автор(ы):, , ,
Патентообладатель(и):Научно-исследовательский институт конструкционных материалов на основе графита
Приоритеты:
подача заявки:
1992-07-21
публикация патента:

Изобретение относится к технологии производства конструкционных материалов из карбида кремния. Сущность изобретения: способ включает жидкофазное силицирование углеволокнистой заготовки спрессованной всухую (без коксующегося связующего) до плотностей 850-1050 кг/м3 при температуре, превышающей , как максимальную температуру предыдущей термообработки углеволокнистого материала, так и температуру плавления кремния. Полученный материал имеет модуль упругости 200-360 МПа. 2 табл.
Рисунок 1

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ИЗ КАРБИДА КРЕМНИЯ, включающий послойную укладку углеволокнистого материала с последующим прессованием заготовки и жидкофазным силицированием, отличающийся тем, что прессование заготовки производят всухую до величины кажущейся плотности 850-1050 кг/м3 при температуре, превышающей максимальную температуру предшествующей термообработки углеволокнистого материала и температуру плавления кремния.

Описание изобретения к патенту

Изобретение относится к технологии производства конструкционных материалов из карбида кремния.

Традиционным методом получения высокотвердых и огнеупорных карбидных изделий является изготовление деталей и самосвязанного карбида кремния [1 и 2] Однако, несмотря на разнообразие модификаций метода, технологические особенности формования заготовок из порошковых сырьевых материалов сильно ограничивают возможности получения деталей сложной формы, в частности тонкостенных.

В тех случаях, когда необходимо изготовить тонкие панели из карбидокремниевого материала, в которых отношение габаритного размера к толщине достигает 100 и более, применяют способ [3] Этот способ состоит в том, что первоначально изготавливается углепластиковая заготовка, в которой наполнителем является углеволокнит (углеродная ткань, углеродный войлок и т.п.), а связующим какая-либо термореактивная смола (фенол-формальдегидная, эпоксидная и т.п.). Углепластиковая заготовка подвергается термообработке в вакууме или в восстановительной среде при температурах около 1000оС (обжиг, карбонизация), после чего крабонизированная углепластиковая заготовка в вакууме или в инертной среде пропитывается жидким кремнием (силицируется) по одной из принятых схем (в кремниевой засыпке, в кремнийсодержащей обмазке, дождеванием из тиглей с расплавом кремния и т.п.). В результате взаимодействия жидкого кремния с углеродом образуется карбид кремния.

Особенностью материала, получаемого описанным выше способом, ограничивающей область его применения, является значительное (не менее 40 об.) содержание остаточного углерода. Это приводит, во-первых, к снижению модуля упругости до величин не более 200 ГПа, что недостаточно при создании особо жестких конструкций. Во-вторых, наличие значительного количества остаточного углерода снижает окислительную стойкость материала при высоких температурах (800-1600оС) в газовых средах, содержащих кислород. В этих условиях в результате выгорания углерода материал разупрочняется и детали быстро выходят из строя.

Как показал проведенный анализ причиной высокого содержания остаточного углерода в материале является образование в карбонизованной заготовке крупных, по сравнению с диаметром волокна включений кокса связующего и алгормератов кокса с волокном. Эти частицы (100 мкм) карбидизируются только в поверхностном слое, а их внутренняя часть оказывается недоступной для жидкого кремния.

Изобретением решается задача получения при силицировании материала с высоким (не менее 75 об.) содержанием карбида кремния за счет изготовления бескоксового углеволокнистого полуфабриката, обладающего достаточной технологической прочностью, позволяющей произвести с заготовкой последующие технологические операции, включая жидкофазное силицирование.

Сущность способа состоит в том, что набор слоев углеволокнита прессуется в сухую до кажущейся плотности 850-1050 кг/м3. Для сохранения этой плотности после прессования и придания получаемому полуфабрикату технологической прочности материал прессуют при температурах, превышающих максимальную температуру предыдущей термообработки волокнита и не ниже температуры плавления кремния ( способ получения материала из карбида кремния, патент № 2034814 1415оС). После этого заготовку силицируют одним из известных способов.

Выбор интервала значений кажущейся плотности прессованной заготовки углеволокнита обусловлен двумя перечисленными ниже факторами. При плотности ниже 850 кг/м3 углеволокнистая заготовка имеет недостаточную технологическую прочность, а получаемый и нее карбидный материал имеет высокую прочность и пониженный модуль упругости.

При плотности выше 1050 кг/м3 резко возрастает содержание остаточного углерода, падает модуль упругости и снижается стойкость в окислительных газовых средах.

Выбор температуры прессования выше максимальной температуры предыдущей термообработки углеволокнита позволяет за счет необратимых формоизменений волокон устранить упругое расширение заготовки после снятия давления и зафиксировать полученную плотность полуфабриката и механическое зацепление волокон соседних слоев. Последнее обстоятельство обеспечивает необходимую технологическую прочность.

В том случае, когда исходный материал имеет сравнительно низкую температуру термообработки, напримерспособ получения материала из карбида кремния, патент № 2034814 1000оС, температура прессования должна быть не ниже температуры плавления кремния ( 1415оС) для того, чтобы при нагреве в начальной стадии процесса силицирования не происходили формоизменения заготовки до ее пропитки кремнием.

Примеры реализации способа.

Использовались углеволокнистые материалы марки, свойства которых приведены в табл.1.

Формование пакетов углеволокнитов проводилось на прессе "горячего" прессования, в котором нагрев до требуемой температуры осуществлялся прямым пропусканием электрического тока через графитовую оснастку, а начальное удельное давление прессования изменялось от 1 до 5 МПа в зависимости от углеволокнита.

В проведенных экспериментах было установлено, что изменение температуры прессования карбонизованных материалов в интервале 1500-2100оС не сказывается практически на свойствах полуфабриката и карбидного материала. Выбор сырья также оказался несущественным, но более экономичным процессы с карбонизованными, а не с графитированными (как ТГН-2М) углеволокнистыми материалами.

Это позволило большую часть экспериментов выполнить на дешевой ткани УУТ-2СТ при температуре прессования 1500-1600оС.

Наиболее существенным параметром для бескоксовых углеволокнистых полуфабрикатов оказалась их кажущаяся плотность.

Карбидизация полуфабрикатов осуществлялась в электрических вакуумных печах методом силицирования в кремниевой засыпке. При этом использовались режимы: (а, б) с выпариванием избыточного кремния и полным заполнением пористости избыточным кремнием соответственно.

Результаты силицирования приведены в табл.2.

При силицировании по режиму (а) объемная доля остаточного кремния в материале не превышала 1 об.

Данные, приведенные в виде дроби во втором и шестом столбцах, соответствуют режиму (а) числитель и режиму (б) знаменатель.

Потеря массы (седьмой столбец) определялась при выдержке пористого образца на воздухе при 1000оС до стабилизации его массы. Эта величина соответствует количеству остаточного свободного углерода в материале.

Класс C04B35/56 карбидов

композиция на основе оксикарбида алюминия и способ ее получения -  патент 2509753 (20.03.2014)
способ изготовления керамического бронематериала на основе карбида кремния и карбида бора и керамический бронематериал на основе карбида кремния и карбида бора -  патент 2440956 (27.01.2012)
шихта для изготовления наконечников термопар -  патент 2333180 (10.09.2008)
карбидкремниевый бетон -  патент 2257361 (27.07.2005)
ячеисто-каркасный материал с открыто-пористой структурой и способ его получения -  патент 2213645 (10.10.2003)
способ изготовления металлсодержащих композиционных материалов -  патент 2211182 (27.08.2003)
способ получения тугоплавкого композиционного карбидосодержащего изделия -  патент 2189367 (20.09.2002)
жаростойкий материал -  патент 2178958 (27.01.2002)
термохимическая обработка в галогенсодержащей атмосфере непористого, слабопористого или очень пористого углеродного материала -  патент 2178394 (20.01.2002)
способ получения тугоплавкого композиционного карбидосодержащего изделия -  патент 2173307 (10.09.2001)
Наверх