углерод-углеродный композиционный материал
Классы МПК: | C01B31/04 графит C04B35/52 на основе углерода, например графита G21F1/00 Состав материалов для защиты от излучений |
Автор(ы): | Бурцева Т.А., Прокофьев Ю.Г., Персин М.И., Соколов В.А., Симонова Л.А., Мазуль И.В. |
Патентообладатель(и): | Научно-исследовательский институт электрофизической аппаратуры им.Д.В.Ефремова |
Приоритеты: |
подача заявки:
1992-07-01 публикация патента:
10.05.1995 |
Использование: получение защитных деталей термоядерного реактора. Сущность изобретения: углерод-углеродный композиционный материал включает, мас. %: углеродное волокно 29 - 31, кокс водорастворимого каменноугольного связывающего 1,5 - 2,0; титан 0,5 - 0,7, пироуглерод - остальное. Предел прочности материала 59 - 68 МПа, тепловая эрозия - унос массы - 0,1 мкг/см2 при Q = 500 Дж/см2,
= 0,15 м, ионная эрозия 2,0
10-2 атом/ион при облучении ионами дейтерия с энергией 300 ЭВ, T = 300°С, радиационная стойкость - степень снижения теплопроводности под воздействием нейтронного потока D = 8-1019, 0,2-0,5 см-2 при Tобл. = 200 - 370°С. 4 табл.
Рисунок 1, Рисунок 2, Рисунок 3


Формула изобретения
УГЛЕРОД-УГЛЕРОДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, содержащий пироуглерод и углеродное волокно в виде объемно-армирующего каркаса, отличающийся тем, что он дополнительно содержит кокс водорастворимого каменноугольного связующего и титан при следующем соотношении компонентов, мас. Углеродное волокно 29 31Кокс водорастворимого каменноугольного связующего 1,5 2,0
Титан 0,5 0,7
Пироуглерод Остальное
Описание изобретения к патенту
Изобретение относится к плазмозащитным эрозионностойким углеродным материалам и может быть использовано в реакторостроении при изготовлении защиты деталей, обращенных к плазме (приемного диверторного устройства, первой стенки и др.) термоядерного реактора. Материалы на основе углерода широко применяются в конструкциях современных термоядерных установок и проектируемых реакторов в виде облицовочных плиток, прикрепленных к водоохлаждаемой подложке. Низкий атомный номер и благоприятные теплофизические свойства, высокая температура сублимации определяют преимущества углеродных материалов перед другими материалами, работающими в контакте с высокотемпературной плазмой [1]Наиболее близким по составу и свойствам к предлагаемому является углерод-углеродный композиционный материал ЗД (Sepcarb-1). Материал ЗД представляет собой ортогональноармированный в трех направлениях углерод-углеродный композит с пироуглеродной матрицей. Углеродное волокно и пироуглерод находятся в следующем соотношении, мас. Углеродное волокно 29-30 Пироуглерод 70-71
Материал ЗД, принятый за прототип, обладая повышенной прочностью по сравнению с аналогами, имеет недостаточную теплопроводность. Термопрочность такого материала невысокая, рассчитанная по критерию Кинджери (R")
R"








Кокс водорастворимого
каменноугольного связующего 1,5-2,0 Титан 0,5-0,7 Пироуглерод Остальное
Экспериментальная оценка эксплуатационных свойств заявляемого материала в сравнении с прототипом в условиях, имитирующих плазменное воздействие термоядерного реактора, показала, что применение такого материала позволит увеличить срок службы защиты без замены в 1,5-2,0 раза, облегчит процесс дистанционного ремонта плазмозащиты, повысит его надежность. Для получения материала из углеродной нити (на основе полиакрилонитрила) по ТУ6-12-31-741-91 методом плетения были изготовлены объемноармирующие каркасы пятинаправленной структуры (армирование в 4-х направлениях в горизонтальной плоскости и в одном направлении в вертикальной плоскости). Армирующие каркасы подвергали вакуумной пропитке в растворе сульфата титана, затем сушили и термоокисляли на воздухе при 500о С. Термоокисленные каркасы подвергали пропитке водорастворимыми каменноугольным связующим (ВОКС), представляющим собой продукты термической обработки высококипящих фракций каменноугольной смолы серной кислотой. Пропитка осуществлялась в вакууме при комнатной температуре, затем каркасы сушили при температуре 100-120о С и термообрабатывали при 270о С в инертной атмосфере. Насыщение каркасов пироуглеродом проводили из природного газа по ГОСТ 5542-87 (содержание метана

Оптимальным является материал с содержанием кокса 1,5-2,0% титана 0,5-0,7%
Содержание кокса более 2,0% препятствуя насыщению каркаса пироуглеродом до высокой плотности, способствуя образованию пироуглеродной матрицы с крупной закрытой пористостью и низкой теплопроводностью, содержание кокса менее 1,5% не обеспечивает сохранность структуры кокса при высокотемпературной обработке и низкие значения прочности в материале. Материал с содержанием титана более 0,7% обладает низкой прочностью и теплопроводностью, что вызвано значительными разрушениями углеродного волокна, происходящими при обработке каркаса сернокислыми титансодержащими растворами с периодическим окислением. Содержание титана менее 0,5% не оказывает влияния на теплопроводность, снижая прочность материала. Для оценки работоспособность заявляемого материала (в сравнении с прототипом) были проведены эксперименты, имитирующие тепловую нагрузку, ионную бомбардировку и нейтронное облучение термоядерного реактора. Использованные установки и параметры воздействия приведены в табл.1. Для имитации тепловой нагрузки в квазистационарном режиме использовано облучение электронами, обеспечивающими необходимые плотности теплового потока. Ионная бомбардировка, вызывающая эрозию материала в термоядерном реакторе, имитировалась в тлеющем разряде магнетронного типа, позволяющем получать значительные потоки частиц и дозы экспонирования. Влияние нейтронного потока на материал проверялось путем измерения теплопроводности материала до облучения нейтронами в материаловедческом реакторе ИР-8 и после. Эксплуатационные свойства предлагаемого материала и прототипа приведены в табл.4.
Класс C04B35/52 на основе углерода, например графита
Класс G21F1/00 Состав материалов для защиты от излучений