способ биологической очистки жидкостей от радионуклидов и тяжелых металлов и штамм гриба rhizopus arrhirus bkmf - 592, используемый для получения биомассы, извлекающей радионуклиды и тяжелые металлы из жидкостей

Классы МПК:G21F9/18 биологическая 
C02F3/34 отличающаяся используемыми микроорганизмами
Автор(ы):, ,
Патентообладатель(и):Акционерное общество закрытого типа "ЭДЕМ"
Приоритеты:
подача заявки:
1992-04-14
публикация патента:

Использование: в прикладной микробиологии, при биологической очистке от радионуклидов и тяжелых металлов сточных вод, жидких радиоактивных отходов или твердых металлов после приготовления из них растворов, содержащих радионуклиды и тяжелые металлы. Сущность изобретения: способ очистки жидкостей от радионуклидов и тяжелых металлов заключается в обработке указанных жидкостей сорбентом в виде биомассы грибов вида Phizopus arrhizus, преимущественно штамма Rhizopus arrhizus BKMF-592. 2 с.п.ф-лы, 4 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Способ биологической очистки жидкостей от радионуклидов и тяжелых металлов, включающий обработку жидкостей сорбентом в виде биомассы грибов, отличающийся тем, что в качестве сорбента используют биомассу грибов вида Phizopus arrhirus.

2. Штамм гриба Rhizopus arrhirus BKMF-592, используемый для получения биомассы, извлекающей радионуклиды и тяжелые металлы из жидкостей.

Описание изобретения к патенту

Изобретение относится к прикладной микробиологии и может быть использовано при биологической очистке от радионуклидов и тяжелых металлов сточных вод, жидких радиоактивных отходов или твердых металлов после приготовления из них растворов, содержащих радионуклиды и тяжелые металлы.

Известен способ очистки жидкостей от урана и тория, включающий использование в качестве сорбента биомассы грибов Rhizopus arrhizus [1].

Недостатком известного способа является то, что им не предусмотрена очистка жидкостей от других радионуклидов и тяжелых металлов.

Известен штамм бактерий Pseudomonas aeruginosa, биомассу которого используют в качестве сорбента для очистки жидкостей от радионуклидов, таких как уран и торий [2]. Недостатком известного штамма является отсутствие сведений о возможности использования его биомассы для извлечения из жидкостей других радионуклидов (Pu, Cs, Sr), а также тяжелых металлов.

Цель изобретения - повышение эффективности за счет расширения спектра удаляемых из жидкостей радионуклидов и тяжелых металлов и снижения их остаточного содержания в обработанной жидкости.

Целью изобретения является также расширение ассортимента штаммов грибов, биомасса которых эффективно удаляет широкий спектр радионуклидов и тяжелых металлов из жидкостей.

Цель достигается тем, что по способу очистки жидкостей от радионуклидов и тяжелых металлов, включающему обработку жидкостей сорбентом в виде биомассы грибов, в качестве сорбента используют биомассу грибов вида Rhizopus arrhizus, преимущественно биомассу штамма Rhizopus arrhizus ВКМF-592.

Штамм Rhizopus arrhizus ВКМF-592 депонирован во Всесоюзной коллекции микроорганизмов как типов (Каталог культур микроорганизмов, поддерживаемых в учреждениях СССР. М.: Наука, 1981, с.171).

Ниже приведены примеры реализации нового способа, иллюстрирующие применение известного штамма по новому назначению.

П р и м е р 1. Исследованные штаммы Rhizopus arrhizus хранили на косяках агаризованного сусла при температуре +4 способ биологической очистки жидкостей от радионуклидов и   тяжелых металлов и штамм гриба rhizopus arrhirus bkmf - 592,   используемый для получения биомассы, извлекающей   радионуклиды и тяжелые металлы из жидкостей, патент № 2024080 1оС с пересевом на свежие косяки через 2-4 мес. Наработку биомассы грибов, используемой в качестве сорбента для удаления радионуклидов и тяжелых металлов из растворов их солей, осуществляли в несколько стадий.

Культуру, хранившуюся на косяках, пересевали на среду следующего состава, г/л: Глюкоза 20 (NH4)2SO4 2 K2HPO4 1 MgSO4.7H2O 0,5 Дрожжевой экстракт 0,1

Для приготовления среды к перечисленным компонентам добавляли дистиллированную воду до 1 л. Перед стерилизацией 10%-ным раствором H2SO4 доводили рН среды до 6,3. Среду стерилизовали при 121оС в течение 30 мин.

Штамм инкубировали в колбах Эрленмейера на круговой качалке при 230 об/мин и температуре 28оС в течение 48-60 ч. Для получения биомассы полученный инокуляционный материал вносили в ту же питательную среду в количестве 5-6% по объему и инкубировали в течение 48 ч в ферментационных аппаратах фирмы Biotec при условиях: рН среды 6,3ж аэрация: два объема воздуха к одному объему среды при перемешивании со скоростью 500 об/мин при температуре 28оС. После завершения цикла ферментации биомассу отделяли центрифугированием, промывали дистиллированной водой и использовали как сорбент для удаления радионуклидов и тяжелых металлов из растворов их солей.

П р и м е р 2. Выращивание гриба проводили как в примере 1. Провели сопоставление эффективности применения биомассы разных штаммов вида Rhizopus arrhizus для удаления радионуклидов, содержащихся в растворе в присутствии тяжелых металлов.

Сорбирующие свойства биомассы трех штаммов Rhizopus arrhizus изучен на примере очистки специально приготовленных индивидуальных растворов 90Sr, 137Cs, 239Pu и растворов их смеси с добавлением к растворам ионов тяжелых металлов (Fe, Ni, Cr и др.).

К суспензии биомассы добавляли известное количество радионуклидов и тяжелых металлов и затем подвергали встряхиванию на качалке с частотой около 250 раз в минуту в течение 2 ч. Затем биомассу отделяли центрифугированием.

Содержание радионуклидов и тяжелых металлов в очищаемых от них растворах определяли до и после обработки растворов сорбентом - биомассой изученных штаммв Rpizopus arrhizus.

Для удобства сопоставления во всех вариантах опыта очистке от радионуклидов и тяжелых металлов подвергали модельные растворы хлоридов 90Sr, 237Cs, 239Pu с удельной активностью каждого элемента около 107 Бк/л. Результаты приведены в табл.1 и 2, в которых приняты следующие обозначения:

Скон - концентрация соответствующего радионуклида в растворе после проведения биосорбции, Бк/л;

К - константа распределения радионуклида между водной фазой и биомассой, л/г.сух.вес.

Величину константы определяли из выражения

K = способ биологической очистки жидкостей от радионуклидов и   тяжелых металлов и штамм гриба rhizopus arrhirus bkmf - 592,   используемый для получения биомассы, извлекающей   радионуклиды и тяжелые металлы из жидкостей, патент № 2024080 , где Анач и Акон - полная активность данного радионуклида в водной среде до и после биосорбции соответственно, Бк/л;

W - масса сухого вещества в данном образце биосуспензии, г.

Для характеристики полноты извлечения радионуклидов из водной фазы рассчитывали их степень извлечения

способ биологической очистки жидкостей от радионуклидов и   тяжелых металлов и штамм гриба rhizopus arrhirus bkmf - 592,   используемый для получения биомассы, извлекающей   радионуклиды и тяжелые металлы из жидкостей, патент № 2024080 = способ биологической очистки жидкостей от радионуклидов и   тяжелых металлов и штамм гриба rhizopus arrhirus bkmf - 592,   используемый для получения биомассы, извлекающей   радионуклиды и тяжелые металлы из жидкостей, патент № 2024080 способ биологической очистки жидкостей от радионуклидов и   тяжелых металлов и штамм гриба rhizopus arrhirus bkmf - 592,   используемый для получения биомассы, извлекающей   радионуклиды и тяжелые металлы из жидкостей, патент № 2024080 100% .

Данные, представленные в табл.1 и 2, показывают, что биомасса всех испытанных штаммов вида Rhizopus cirrhizus является эффективным сорбентом для удаления индивидуальных радионуклидов и их солей из растворов, в том числе в присутствии солей тяжелых металлов, содержание которых после обработки жидкости биомассой исследованных штаммов Rhizopus arrhizus было менее 1 мг/мл.

Следует отметить, что сорбция происходила из ультраразбавленных растворов радионуклидов (равновесная концентрация для 90Sr была порядка 10-8 г/л и менее, для 137Cs - 10-6 г/л, для 239Pu 10-4 г/л), что свидетельствует о чрезвычайно высоком сродстве биологических структур изучаемого вида микроорганизмов к 90Sr, 137Cs и 239Pu. Наибольшую эффективность очистки жидкостей от радионуклидов и тяжелых металлов обеспечивает биомасса штамма Rhizopus arrhizus ВКМА-592.

П р и м е р 3. Провели сравнение эффективности применения биомассы грибов вида Rhizopus arrhizus для очистки жидкостей от радионуклидов и тяжелых металлов и биомассы других изученных видов микроорганизмов. Результаты представлены в табл.3 и свидетельствуют о наиболее высокой эффективности биомассы грибов вида Rhizopus arrhizus.

П р и м е р 4. В качестве объекта очистки был использован водный раствор хлоридов 90Sr, 137Cs и 239Pu с начальной концентрацией 9,96.105 Бк/л, 5,93.106 Бк/л и 4,21.104 Бк/л соответственно. Помимо указанных радионуклидов в очищаемой жидкости содержался FeCl3. Таким образом, в системе кроме тяжелого металла плутония присутствовали ионы еще одного тяжелого металла - Fe3+ с концентрацией 7,5 мг/л.

Очистку данной жидкости проводили биомассой штамма Phizopus arrhizus ВКМF-592. Методика очистки состояла в следующем. Биомассу штамма суспендировали в очищаемой жидкости из расчета около 10 см3 сырой биомассы на 100 мл жидкости. Полученную биосуспензию перемешивали на круговой качалке не менее 30 мин с частотой около 240-250 колебаний в минуту. По завершении перемешивания биомассу отделяли фильтрованием и отмывали. После отбора пpобы на анализ очищаемую жидкость по той же методике еще раз обработали биомассой штамма Rhizopus arrhizus ВКМF-592. Следует отметить, что уже после первого цикла очистки железо присутствовало в водной фазе только в следовых количествах (< 1 мг/л).

Завершали очистку жидкости ее пропусканием через слой сырой биомассы штамма Rhizopus arrhizus (толщина слоя 25-30 мм). Биомасса находилась в колонке, на дне которой был установлен бактериальный фильтр. Жидкость пропускали через колонку со скоростью около 1 мл/ч. Результаты приведены в табл. 4 и свидетельствуют об удалении из жидкости 95,5% содержащихся в ней радионуклидов.

Класс G21F9/18 биологическая 

способ переработки маслосодержащих жидких радиоактивных отходов -  патент 2528433 (20.09.2014)
способ биоочистки вод от техногенных радионуклидов -  патент 2255906 (10.07.2005)
способ переработки отработанной биомассы микроорганизмов, использованной для извлечения радионуклидов и тяжелых металлов -  патент 2123733 (20.12.1998)
установка биодезактивации -  патент 2097851 (27.11.1997)
способ дезактивации и биореактор -  патент 2076361 (27.03.1997)
способ переработки отработанной биомассы микроорганизмов, использованной для извлечения радионуклидов и тяжелых металлов из растворов их солей -  патент 2028678 (09.02.1995)
способ биологической очистки жидкостей от радионуклидов и тяжелых металлов и штамм гриба aspergillus niger bkmf - 33, используемый для получения биомассы, извлекающей радионуклиды и тяжелые металлы из жидкостей -  патент 2024079 (30.11.1994)
способ биологической очистки жидкостей от радионуклидов и тяжелых металлов и штамм гриба penicillium chrysogenum bkmf - 3330д, используемый для получения биомассы, извлекающей радионуклиды и тяжелые металлы из жидкостей -  патент 2024078 (30.11.1994)
способ очистки загрязненных территорий -  патент 2010366 (30.03.1994)

Класс C02F3/34 отличающаяся используемыми микроорганизмами

биосорбент для ликвидации нефти с поверхности водоемов -  патент 2529771 (27.09.2014)
штамм rhodotorula sp. для очистки почв, вод, сточных вод, шламов от нефти и нефтепродуктов -  патент 2526496 (20.08.2014)
способ очистки воды и мерзлотных почв от нефти и нефтепродуктов штаммом бактерий pseudomonas panipatensis вкпм в-10593 -  патент 2525932 (20.08.2014)
способ очистки мерзлотных почв и водной среды от нефти и нефтепродуктов спорообразующими бактериями bacillus vallismortis -  патент 2525930 (20.08.2014)
штамм бактерий exiguobacterium mexicanum - деструктор нефти и нефтепродуктов -  патент 2523584 (20.07.2014)
способ очистки мерзлотной почвы и водной среды от нефти и нефтепродуктов штаммом бактерий exguobacterium mexicanum -  патент 2521654 (10.07.2014)
способ очистки водного раствора, содержащего соль никеля, от ионов никеля. -  патент 2521653 (10.07.2014)
способ биологической очистки -  патент 2520561 (27.06.2014)
способ учета нефтеокисляющих бактерий в морской воде -  патент 2520084 (20.06.2014)
штамм rhodococcus sp.-деструктор нефтяных углеводородов -  патент 2518349 (10.06.2014)
Наверх