Паросиловые установки; аккумуляторы пара; силовые установки с двигателями, не отнесенные к другим рубрикам; двигатели, работающие на особых рабочих телах или по особым циклам – F01K

МПКРаздел FF01F01K
Раздел F МАШИНОСТРОЕНИЕ; ОСВЕЩЕНИЕ; ОТОПЛЕНИЕ; ДВИГАТЕЛИ И НАСОСЫ; ОРУЖИЕ И БОЕПРИПАСЫ; ВЗРЫВНЫЕ РАБОТЫ
F01 Машины или двигатели вообще
F01K Паросиловые установки; аккумуляторы пара; силовые установки с двигателями, не отнесенные к другим рубрикам; двигатели, работающие на особых рабочих телах или по особым циклам

F01K 1/00 Аккумуляторы пара
применение в паросиловых установках  3/00
F01K 11/00 Силовые установки с двигателями, конструктивно объединенными с котлами или конденсаторами
F01K 13/00 Общая компоновка или общие технологические схемы силовых установок
F01K 15/00 Приспосабливание силовых установок для специальных целей
F01K 17/00 Использование пара или конденсата, выделенного или выпущенного из паросиловой установки
для подогрева питательной воды  7/34; возврат конденсата в котел  F 22D
F01K 19/00 Регенерация или другая обработка отработанного пара
установки со средствами для хранения пара в щелочи с целью повышения его давления  5/00; возврат конденсата в котел  F 22D
F01K 21/00 Паросиловые установки, не отнесенные к другим группам
F01K 23/00 Установки с более чем двумя двигателями, подающими энергию внешним потребителям и работающими на разных рабочих телах
F01K 25/00 Установки или двигатели, работающие на особых рабочих телах, не отнесенные к другим группам; установки, работающие по замкнутым циклам, не отнесенные к другим группам
F01K 27/00 Установки для преобразования тепловой или кинетической энергии рабочего тела в механическую энергию, не отнесенные к другим группам
F01K 3/00 Паросиловые установки с паровыми или тепловыми аккумуляторами или промежуточными подогревателями пара
регенерирование отработавшего пара  19/00
F01K 5/00 Установки со средствами для хранения пара в щелочи с целью повышения его давления, например типа Хонигмана или Кенемана
F01K 7/00 Установки с особыми типами двигателей; установки или двигатели, применяемые в специальных паровых системах, циклах или процессах
 3/02 имеет преимущество; поршневые прямоточные двигатели  F 01B 17/04
F01K 9/00 Установки с конденсаторами, приспособленными для совместной работы с двигателями
с конденсаторами, конструктивно объединенными с двигателями  11/00; конденсаторы пара как таковые  F 28B

Патенты в данной категории

СПОСОБ ДЛЯ ГЕНЕРАЦИИ ПАРА С ВЫСОКИМ КПД

Изобретение относится к генерации пара из рабочего тела парогенератора, который предпочтительно выполнен как парогенератор на отходящем тепле. Предлагается способ преобразования в пар рабочего тела парогенератора, при котором в теплообменнике для преобразования в пар рабочего тела тепловая энергия от теплоносителя передается к рабочему телу, причем температура теплоносителя в термическом генераторе повышается, прежде чем теплоноситель будет подан в теплообменник, и на термический генератор с помощью дополнительного теплоносителя подается тепловая энергия, причем температура дополнительного теплоносителя в промышленной установке, вырабатывающей остаточное или отходящее тепло, с использованием остаточного или отходящего тепла или в геотермальной установке повышается, прежде чем дополнительный теплоноситель поступит на термический генератор, при этомтемпература подаваемого в термический генератор дополнительного теплоносителя ниже, чем температура теплоносителя, подаваемого на теплообменник парогенератора. Такой способ позволит достигнуть повышенный кпд генерации пара. 3 ил.

2529767
выдан:
опубликован: 27.09.2014
СПОСОБ АККУМУЛИРОВАНИЯ ЭНЕРГИИ

Изобретение относится преимущественно к автономным системам и установкам энергообеспечения, использующим как различные виды топлива, так и возобновляемые источники энергии, например энергию солнца, и предназначено для обеспечения отопительным теплом, горячей водой, холодом и электроэнергией различных объектов, имеющих неравномерную энергетическую нагрузку. В способе аккумулирования энергии, в котором в энергоустановку подают из газохранилища сжатый воздух, а также газообразное топливо, продукты сжигания которого используют в периоды увеличения нагрузки электросети для газотурбинного привода мотор-генератора, который в периоды провала нагрузки электросети используют для сжатия воздуха и нагнетания его в газохранилище, по меньшей мере часть сжатого воздуха, отбираемого из газохранилища, используют для проведения паровоздушной конверсии природного газа в адиабатическом реакторе конверсии, продукты которой подают в периоды увеличения нагрузки электросети на сжигание в потоке сжатого воздуха с получением продуктов сгорания, подаваемых на расширение в газотурбинный привод мотор-генератора, а затем на охлаждение в водяном парогенераторе, из которого вырабатываемый водяной пар подают на смешение со сжатым воздухом перед паровоздушной конверсией природного газа. В периоды провала нагрузки электросети перед подачей в газохранилище сжатого воздуха его охлаждают за счет нагрева теплофикационной воды. Изобретение позволяет повысить надежность аккумулирования энергии. 7 з.п. ф-лы, 1 ил.

2529615
выдан:
опубликован: 27.09.2014
ДВУХРОТОРНЫЙ ВОЗДУШНЫЙ КОМПРЕССОР ДЛЯ ПАРОГАЗОВЫХ УСТАНОВОК

Рассматривается двухроторный воздушный компрессор для парогазовых установок, где в едином корпусе установлены ротор низкого давления, связанный с утилизационной паровой турбиной, расположенной на стороне всасывания атмосферного воздуха в компрессор, и ротор высокого давления, связанный с газовой турбиной, расположенный со стороны нагнетания компрессора. Степень сжатия воздуха в компрессоре низкого давления 1 определяется из условия равенства мощности утилизационной паровой турбины мощности компрессора низкого давления, а степень сжатия воздуха в компрессоре высокого давления 2 равна где - общая степень сжатия воздуха в двухроторном компрессоре. Изобретение направлено на увеличение предельной мощности парогазовых установок. 3 ил.

2529296
выдан:
опубликован: 27.09.2014
СПОСОБ ПОДОГРЕВА В ПАРОВЫХ ТЕПЛООБМЕННИКАХ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к энергетике. Способ подогрева в паровых теплообменниках путем ступенчатого подогрева нагреваемой среды в теплообменниках в несколько ступеней паром с повышающимся на каждой ступени давлением, подводимого к теплообменникам по паропроводам, и отвода конденсата пара из теплообменников по трубопроводам на каждой ступени через устройства отвода конденсата, при этом для обогрева теплообменников на каждой ступени используется пар котельной или ТЭЦ, который перед поступлением в теплообменник смешивается посредством струйной инжекции в струйном компрессоре с паром от самоиспарения конденсата, отводимого из этого же теплообменника в устройство отвода конденсата, причём конденсат выводится из установки из устройства отвода конденсата первой ступени подогрева, а часть отводимого конденсата впрыскивается в пар после струйной инжекции. Также представлена установка для осуществления способа. Изобретение позволяет снизить затраты пара котельной или ТЭЦ на подогрев нагреваемой среды, получить конденсат высокой чистоты и увеличить срок службы теплообменных трубок. 2 н. и 2 з.п. ф-лы, 1 ил.

2528452
выдан:
опубликован: 20.09.2014
ПАРОВАЯ ТУРБИНА

Паровая турбина содержит первый кожух, содержащий первую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при первой температуре. Концевое уплотнение предназначено для частичного уплотнения первого кожуха с вращающимся валом. Регулятор проходящего через уплотнение пара предназначен для приема потока пара из концевого уплотнения. Второй кожух содержит вторую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при второй температуре, которая меньше первой температуры. Эжектор предназначен для создания смеси из по меньшей мере части потока пара, получаемого из указанного регулятора, и пара, отводимого из расположенной выше по потоку камеры заданной ступени второй турбины, и для введения указанной смеси во вторую турбину. Позволяет полезно использовать пар утечек из уплотнений высокотемпературной части турбины, обладающий повышенной для низкотемпературной части турбины температурой и пониженным давлением, для работы в низкотемпературной части турбины. 9 з.п. ф-лы, 10 ил.

2527802
выдан:
опубликован: 10.09.2014
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ КОЧЕТОВА

Изобретение относится к энергетике. Тепловая электрическая станция содержит конденсатор паровой турбины, декарбонизатор с воздуховодом, систему оборотного водоснабжения, которая включает градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, которые, в свою очередь, выполнены в виде форсунки с распылительным диском, содержащей цилиндрический корпус со штуцером, жестко связанным с корпусом и соосно расположенным в верхней части корпуса и имеющим цилиндрическое отверстие для подвода жидкости, соединенное с диффузором, осесимметричным корпусу и штуцеру, а к корпусу, в его нижней части, посредством, по крайней мере, трех спиц подсоединен распылитель, расположенный перпендикулярно оси корпуса и выполненный в виде сплошного диска. Изобретение позволяет повысить экономичность тепловой электрической станции. 1 з.п. ф-лы, 3 ил.

2527261
выдан:
опубликован: 27.08.2014
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И ЭНЕРГОБЛОК

Изобретение может быть использовано в химической промышленности и энергетике. Устройство (1) для получения водорода, установленное в энергоблоке, включает увлажнитель (2), который снабжен технологической средой, содержащей окись углерода, предназначенный для смешивания технологической среды с паром. Из увлажнителя (2) технологическая среда поступает реактор (3), где в присутствии катализатора протекает реакция преобразования окиси углерода в углекислый газ. После окончания реакции в реакторе (3) высокотемпературная технологическая среда проходит через первый трубопровод (А) в десульфуратор. Теплообмен между высокотемпературной средой, протекающей по первому трубопроводу (А) и низкотемпературной подпиточной водой, протекающей по второму трубопроводу, обеспечивает первая группа теплообменников (51а, 51в). Каждый из этих теплообменников (51а, 51в) установлен в местах пересечения первого (А) и второго (В) трубопроводов. Выработанный в процессе теплообмена в первом теплообменнике (51а, 51в) пар через третий трубопровод (С) подают в десульфуратор. Изобретение позволяет повысить эффективность производства энергии. 3 н. и 1 з. п. ф-лы, 10 ил.

2526459
выдан:
опубликован: 20.08.2014
СПОСОБ ДООБОРУДОВАНИЯ РАБОТАЮЩЕЙ НА ИСКОПАЕМОМ ТОПЛИВЕ ЭНЕРГОУСТАНОВКИ УСТРОЙСТВОМ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА

Изобретение относится к энергетике. Способ дооборудования энергоустановки, работающей на ископаемом топливе, содержащей многокорпусную паровую турбину и конденсатор, устройством отделения диоксида углерода, при котором поглощающая способность паровой турбины согласуется с технологическим паром, отбираемым для работы устройства отделения диоксида углерода, и устройство отделения диоксида углерода посредством паропровода присоединяется к соединяющему два корпуса паровой турбины перепускному трубопроводу. Изобретение позволяет создать недорогой способ дооборудования устройством отделения диоксида углерода, который предотвращает замену ступени низкого давления паровой турбины и обеспечивает отбор пара низкого давления из перепускного трубопровода так, что это не приводит к падению давления на ступени низкого давления. 2 н. и 3 з. п. ф-лы, 2 ил.

2525996
выдан:
опубликован: 20.08.2014
ПАРОГАЗОВАЯ НАДСТРОЙКА ПАРОТУРБИННОГО ЭНЕРГОБЛОКА С ДОКРИТИЧЕСКИМИ ПАРАМЕТРАМИ ПАРА

Изобретение относится к энергетике. Парогазовая надстройка паротурбинного энергоблока с докритическими параметрами пара, заключающаяся в том, что паротурбинный энергоблок докритических параметров пара, работающий на газе, надстраивают парогазовой установкой с предвключенной паровой турбиной с суперсверхкритическими начальными параметрами пара. Изобретение позволяет повысить тепловую экономичность установки без проведения реконструкции тепловой схемы, парового котла и энергетического оборудования паротурбинного блока. 2 ил.

2525569
выдан:
опубликован: 20.08.2014
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА, РАБОТАЮЩАЯ НА ОРГАНИЧЕСКОМ ТОПЛИВЕ, С УСТРОЙСТВОМ ДЛЯ ОТДЕЛЕНИЯ ДИОКСИДА УГЛЕРОДА И СПОСОБ ЭКСПЛУАТАЦИИ ТАКОЙ УСТАНОВКИ

Изобретение относится к энергетике. Энергетическая установка, работающая на органическом топливе, включает в себя котельный агрегат, установленную следом за котельным агрегатом через горячий трубопровод промежуточного перегрева паровую турбину и устройство для отделения диоксида углерода, причем устройство для отделения диоксида углерода через трубопровод технологического пара соединено с горячим трубопроводом промежуточного перегрева котельного агрегата. При этом в трубопровод технологического пара включена паровая турбина, работающая с противодавлением. Изобретение позволяет предотвратить несимметричную нагрузку энергетического процесса и минимизировать потери энергии. 2 н.и 6 з.п. ф-лы, 1 ил.

2524588
выдан:
опубликован: 27.07.2014
СПОСОБ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ С РЕГЕНЕРАЦИЕЙ ЭНЕРГОНОСИТЕЛЕЙ В ЦИКЛИЧЕСКОМ ПРОЦЕССЕ ТЕПЛОВОГО ДВИГАТЕЛЯ

Изобретение относится к энергетике. Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя осуществляют в первом энергетическом контуре циркуляции: газогенератор - турбина - реактор гидрирования - сепаратор - газогенератор, в котором углеводородное топливо и кислород или обогащенный кислородом воздух подают в газогенератор, топливо изотермически газифицируют в автотермическом или термическом процессе с образованием смеси водорода и оксидов углерода, и во втором энергетическом контуре циркуляции: паровые котлы - пароперегреватели - паровые турбины - конденсаторы - паровые котлы. При этом конденсат пара и пирогенную воду распределяют между колами пропорционально их производительности, а конденсат влаги воздуха используют для подпитки котлов. Изобретение позволяет интенсифицировать процесс преобразования энергии. 5 з.п. ф-лы, 1 ил.

2524317
выдан:
опубликован: 27.07.2014
СПОСОБЫ РАБОТЫ ВОДОРОДНЫХ ОБРАТИМЫХ ТЕРМОХИМИЧЕСКИХ ЦИКЛОВ И УСТРОЙСТВА ДЛЯ ИХ РЕАЛИЗАЦИИ НА БАЗЕ МЕТАЛЛОГИДРИДНЫХ ТЕХНОЛОГИЙ

Изобретение относится к машиностроению. В предложенных прямых и обратных термохимических циклах между основными сорбционными процессами введены процессы регенерации теплоты в цикле на базе регенераторов теплоты с теплоаккумулирующей набивкой. В термосорбционных циклах применяются два и более слоев металлогидридов с различными сорбционными свойствами, заключенными в отдельные секции в одном генераторе-сорбере. Генератор-сорбер выполнен в виде блок-модуля. Для контроля и управления применяются различные типы систем с применением компьютеров. Изобретение позволяет в равной степени эффективно преобразовывать теплоту возобновляемых источников энергии: геотермальную, солнечную, ветровую и теплоту нагретых потоков газа или жидкости в другие виды энергии, а именно в механическую энергию, в теплоту обогрева зданий, а также в получение холода. 3 н. и 38 з.п. ф-лы, 28 ил.

2524159
выдан:
опубликован: 27.07.2014
СПОСОБ РАБОТЫ ПАРОТУРБИННОЙ УСТАНОВКИ, А ТАКЖЕ УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПАРА ИЗ БУРОГО УГЛЯ

Изобретение относится к химической промышленности. Устройство содержит сушилку (1) с псевдоожиженным слоем, отапливаемый высушенным бурым углем паровой котел, паровую турбину. Бурый уголь подвергают косвенной сушке в сушилке (1). Высушенный уголь охлаждают, измельчают и подают в паровой котел. Топочный газ из парового котла подвергают абсорбционной очистке для отделения CO2. Устройство для очистки топочного газа включает абсорбционную колонну (14), десорбционную колонну (12), рибойлер (13). Необходимую для абсорбционной очистки энергию частично отбирают из сушилки (1). Изобретение позволяет снизить количество необходимого для очистки топочного газа пара низкого давления. 2 н. и 8 з.п. ф-лы, 1 ил.

2523481
выдан:
опубликован: 20.07.2014
ПАРОГАЗОТУРБИННАЯ УСТАНОВКА

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины, теплообменника-конденсатора. Теплообменник-испаритель расположен в канале выходного устройства за турбиной привода компрессора и соединен с одной стороны с источником воды, а с другой - с камерой смешения. Вода, прежде чем попасть в теплообменник-испаритель, проходит через теплообменник-конденсатор паровой турбины. Паротурбинный контур закольцован: входной ресивер турбины соединен с выходом из теплообменника-нагревателя; выходной ресивер турбины через канал низкого давления теплообменника-конденсатора соединен с входом в насос, выход из которого соединен с входом в теплообменник-нагреватель. В паротурбинном контуре циркулирует легкоиспаряющаяся жидкость, переходящая в пар и обратно (например, этиловый спирт), имеющая температуру кипения менее 100°С. Достигается повышение эффективного кпд парогазотурбинной установки до 70-75%. 6 з.п. ф-лы, 4 ил.

2523087
выдан:
опубликован: 20.07.2014
ДВУХПОТОЧНЫЙ ЦИЛИНДР ПАРОТУРБИННОЙ УСТАНОВКИ

Двухпоточный цилиндр паротурбинной установки включает наружный и внутренний цилиндры, ротор с дисками и рабочими лопатками проточной части прямого и обратного потоков, трубопровод подвода охлаждающего пара к турбине. Во внутреннем цилиндре установлены корпусы с уплотнениями вала ротора. В пространстве между дисками первых ступеней прямого и обратного потоков устанавливаются перегородки, соединенные по торцу с поверхностью внутреннего цилиндра и корпусов уплотнений, образующие две кольцевые камеры, ограниченные поверхностями внутреннего цилиндра, корпусов уплотнений и перегородок, а также боковыми поверхностями дисков первых ступеней. Каждая из кольцевых камер соединена через осевой зазор между диском первой ступени примыкающего к этой камере потока и торцевой поверхностью внутреннего цилиндра с камерой подвода пара на рабочую лопатку первой ступени. Через радиальный зазор между валом ротора и гребнями уплотнений кольцевые камеры соединены между собой. Достигается эффективное охлаждение центральной части ротора при минимальном расходе охлаждающего пара, исключаются непроизводительные перетоки пара, что повышает надежность и КПД цилиндра, увеличивает ресурс ротора. 1 ил.

2523086
выдан:
опубликован: 20.07.2014
СИСТЕМА АККУМУЛИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И СПОСОБ АККУМУЛИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Изобретение относится к энергетике. Система аккумулирования термоэлектрической энергии включает в себя теплообменник, содержащий термоаккумулирующую среду, и контур рабочей среды для прокачивания рабочей среды через теплообменник, посредством которого осуществляют теплообмен между рабочей средой и термоаккумулирующей средой. При теплообмене с термоаккумулирующей средой рабочая среда подвергается транскритическому охлаждению в цикле зарядки и транскритическому нагреву в цикле разрядки. Улучшенный кпд замкнутого цикла достигается за счет минимизации в рабочих циклах максимальной разности температур, между температурой рабочей среды и термоаккумулирующей среды. Также представлен способ аккумулирования термоэлектрической энергии в системе согласно настоящему изобретению. Изобретение позволяет повысить КПД замкнутого цикла. 2 н., 5 з. п. ф-лы, 5 ил.

2522262
выдан:
опубликован: 10.07.2014
СИСТЕМА, РАБОТАЮЩАЯ ПО ОРГАНИЧЕСКОМУ ЦИКЛУ РЕНКИНА, ПОВЕРХНОСТНО-ОБРАБОТАННАЯ ПОДЛОЖКА И СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ КИПЕНИЯ ТЕПЛООБМЕННИКА

Изобретение относится к области теплотехники и может быть использовано в системах теплообмена, предназначенных для восстановления и использования отработанного тепла. Система, работающая по органическому циклу Ренкина, для восстановления и использования отработанного тепла, поступающего от источника отработанного тепла, с помощью замкнутого контура рабочей текучей среды содержит по меньшей мере один испаритель. Указанный испаритель дополнительно содержит поверхностно-обработанную подложку для содействия пузырьковому кипению рабочей текучей среды с обеспечением ограничения температуры рабочей текучей среды до значения ниже заданной температуры. Кроме того, испаритель выполнен с обеспечением испарения рабочей текучей среды путем использования отработанного тепла, поступающего от источника отработанного тепла. Технический результат - уменьшение размеров, снижение стоимости и повышение эффективности системы. 3 н. и 18 з.п. ф-лы, 3 ил.

2521903
выдан:
опубликован: 10.07.2014
ПАРОГАЗОВАЯ УСТАНОВКА

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный в выходном канале ГТУ, паровую турбину и насос высокого давления, которые закольцованы.

Рабочим телом ГТУ является смесь воздуха и водяного пара, которая образуется в результате испарения воды в теплообменнике-конденсаторе. Рабочим телом парового контура является пар, который образуется в результате испарения жидкости в теплообменнике-нагревателе с последующей конденсацией в теплообменнике-конденсаторе. Испарение воды и конденсация жидкости в теплообменнике-конденсаторе происходят одновременно. Изобретение позволяет повысить эффективность установки. 2 н. и 8 з.п. ф-лы, 8 ил.

2520762
выдан:
опубликован: 27.06.2014
СПОСОБ РЕГУЛИРОВАНИЯ ТЕПЛОВОЙ НАГРУЗКИ ТЕПЛОФИКАЦИОННОЙ ТУРБОУСТАНОВКИ

Изобретение относится к теплоэнергетике и может быть использовано при эксплуатации теплофикационных турбоустановок на теплоэлектроцентралях (ТЭЦ). Технический результат изобретения - повышение надежности эксплуатации теплофикационных турбоустановок на переменных режимах. Он достигается тем, что уменьшают подвод пара в регенеративные подогреватели в зависимости от изменения температуры питательной воды, которую измеряют, сравнивают с минимально допустимой величиной и при достижении минимально допустимой температуры питательной воды приостанавливают изменение величины подачи пара в регенеративные подогреватели и осуществляют эксплуатацию теплофикационной турбоустановки при минимально допустимой температуре питательной воды котельной установки. 1 ил.

2518784
выдан:
опубликован: 10.06.2014
ПАРОТУРБИННАЯ УСТАНОВКА

Изобретение относится к энергетике. Паротурбинная установка, включающая котел, соединенный паропроводом с турбиной с подсоединенной к ней системой регенерации и конденсатором с конденсатосборником, соединенным трубопроводом с конденсатным насосом, второй котел, соединенный паропроводом со второй турбиной с подсоединенной к ней системой регенерации, причем выхлоп второй турбины соединен посредством трубопровода с установленной на нем задвижкой с бойлером нагрева конденсата, имеющим трубопроводы подвода и выхода воды, и с линией, с установленной на ней задвижкой, отбора пара на собственные и производственные нужды, при этом конденсатный насос соединен линиями с трубопроводом подвода воды к бойлеру второй турбины и с системой регенерации первой турбины, при этом на линии, соединяющей конденсатный насос с трубопроводом подвода конденсата к бойлеру второй турбины в месте соединения ее с системой регенерации первой турбины и на трубопроводе выхода воды из бойлера второй турбины в месте его соединения с трубопроводами системы регенерации первой турбины установлены двухпоточные клапаны, обеспечивающие постоянный расход конденсата в системе регенерации на переходных режимах работы. Изобретение позволяет обеспечить работу турбоустановок как раздельно, так и совместно при отсутствии потребителей тепла у второй турбины. 1 ил.

2517974
выдан:
опубликован: 10.06.2014
СПОСОБ СТАБИЛИЗАЦИИ СЕТЕВОЙ ЧАСТОТЫ ЭЛЕКТРИЧЕСКОЙ СЕТИ ЭЛЕКТРОПИТАНИЯ

Изобретение относится к способу стабилизации сетевой частоты электрической сети электропитания. Двухвальная газовая турбина содержит мощную турбину и газогенератор, причем мощная турбина посредством первого вала соединена с первым генератором с возможностью передачи крутящего момента. Также изобретение относится к устройству для осуществления способа. Обычные методы для стабилизации частоты сопряжены с высокими инвестиционными затратами и потерями КПД. Для решения этих проблем изобретение предусматривает, что первый вал мощной турбины и первого генератора постоянно вращается синхронизированным образом с сетью электропитания, и первый генератор приводит во вращение в качестве двигателя, а второй вал газогенератора постоянно вращается с числом оборотов запуска, причем при запросе мощности газогенератор запускается, и мощная турбина приводится в действие выработанным горячим газом газогенератора, так что первый генератор вырабатывает ток. Изобретение позволяет повысить эффективность и экономичность стабилизации сетевой частоты. 2 н. и 8 з.п. ф-лы, 1 ил.

2517000
выдан:
опубликован: 27.05.2014
СПОСОБ РЕГУЛИРОВКИ КЛАПАНА

Изобретение относится к способу регулирования байпасного парового клапана. Технический результат - создание способа регулирования клапана, с помощью которого экстренное закрытие байпасной станции осуществляется таким образом, что предотвращается преждевременное запирание клапана. Способ регулирования клапана, размещенного в паропроводе, имеющем устройство для впрыска воды, содержащий этапы при которых определяют фактическое , заданное количество воды и максимальный дефицит количества воды FBmax, вычисляют оставшееся время tRest,0 согласно уравнению: и запирают клапан, если tRest,0 меньше установленного значения t, характеризующего тактовый интервал, в течение которого определяется недостаток разбрызгиваемой воды. 7 з.п. ф-лы, 4 ил.

2516627
выдан:
опубликован: 20.05.2014
СИСТЕМЫ И СПОСОБЫ ПРОИЗВОДСТВА СВЕРХЧИСТОГО ВОДОРОДА ПРИ ВЫСОКОМ ДАВЛЕНИИ

Изобретение относится к области химии. В первом реакторе производят экзотермически-генерированный продукт 4 синтез-газа, преобразуя первую часть потока углеводородного сырья. В теплообменной установке риформинга получают эндотермически-преобразованный продукт 7 синтез-газа, в котором, по меньшей мере, часть тепла используют от экзотермически-генерированного продукта синтез-газа. Поток 7 охлаждают. Охлажденный поток 8 пропускают через высокотемпературный реактор сдвига, в котором часть CO реагирует с паром, давая диоксид углерода и водород. Полученный поток 9 направляют в низкотемпературный реактор сдвига. Полученный поток 11 подают в сепаратор, который отделяет метан от комбинации экзотермически-генерированного продукта синтез-газа и эндотермически-преобразованного продукта синтез-газа, получая поток отходящего газа. При этом нагреватель сжигает, по меньшей мере, часть отходящего газа, используя выхлоп из газовой турбины в качестве окислителя, давая потоки перегретого пара и углеводородного сырья, используемые в экзотермически- и эндотермически-генерированном продукте синтез-газа. Генератор генерирует энергию, используя газовую турбину для приведения в действие установки по производству кислорода, обеспечивая кислород для генерирования синтез-газа. Изобретение позволяет получать водород высокой чистоты при высоком давлении. 3 н. и 26 з.п. ф-лы, 16 ил.

2516527
выдан:
опубликован: 20.05.2014
ГАЗОТУРБИННАЯ УСТАНОВКА, УТИЛИЗАЦИОННЫЙ ПАРОГЕНЕРАТОР И СПОСОБ ЭКСПЛУАТАЦИИ УТИЛИЗАЦИОННОГО ПАРОГЕНЕРАТОРА

Изобретение относится к энергетике. Утилизационный парогенератор с входом для отработавших газов, причем между входом для отработавших газов и первым в направлении течения отработавших газов перегревателем расположена нагревательная поверхность, причем к нагревательной поверхности с вторичной стороны подключен отделитель, а нагревательная поверхность выполнена с возможностью запитки с вторичной стороны водой. Также представлены газопаротурбинная установка и способ эксплуатации утилизационного парогенератора. Изобретение позволяет достичь щадящей материал эксплуатации даже при наибольших температурах отработавших газов. 3 н. и 12 з.п. ф-лы, 5 ил.

2516068
выдан:
опубликован: 20.05.2014
СПОСОБ И УСТРОЙСТВО ДЛЯ КОНДЕНСАЦИИ ОТРАБОТАВШЕГО ПАРА ТУРБИНЫ

Изобретение относится к энергетике. Способ конденсации отработавшего пара турбины включает в себя подачу части отработавшего пара в первичный конденсатор, охлаждаемый оборотной водой, в котором он конденсируется, после которого первичный конденсат по конденсатопроводу рабочим насосом подается в сопла мультиступенчатого эжектора, причем другая часть отработавшего пара подается в приемную камеру первой ступени мультиступенчатого эжектора, причем парожидкостная смесь после мультиступенчатого эжектора поступает во вторичный конденсатор, охлаждаемый воздухом, в котором происходит конденсация всего пара и удаление несконденсированных газов. Также представлено устройство для реализации способа. Изобретение позволяет повысить эффективность конденсации отработавшего пара турбины. 2 н. п. ф-лы, 4 ил.

2514560
выдан:
опубликован: 27.04.2014
СИЛОВАЯ УСТАНОВКА ТРАНСПОРТНОГО СРЕДСТВА

Изобретение может быть использовано в силовых установках транспортных средств, снабженных двигателями внутреннего сгорания. Силовая установка транспортного средства содержит двигатель (1) внутреннего сгорания, парогенератор (3), установленный на выпускном коллекторе (4) двигателя внутреннего сгорания, конденсатор (9), сообщенный с парогенератором, паровую турбину (6), накопитель пара (5) и обратный клапан (13), установленный перед накопителем. Парогенератор (3) сообщен с паровой турбиной (6) через накопитель пара (5). Установка дополнительно содержит электронный блок (11) управления, электромагнитный клапан (15) подачи пара, установленный после накопителя (5), датчик (12) температуры, установленный на парогенераторе (3), датчик (18) угловой скорости колес автомобиля, датчик (14) давления, установленный на накопителе пара (5), датчик (16) оборотов вала паровой турбины (6) и вариатор (7). Паровая турбина (6) кинематически связана с вариатором (7). Блок (11) управления электрически соединен с датчиком (12) температуры, датчиком (14) давления, датчиком (18) угловой скорости колес автомобиля, датчиком (16) оборотов вала паровой турбины, электромагнитным клапаном (15) подачи пара и вариатором (7). Технический результат заключается в синхронизации работы двигателя внутреннего сгорания с транспортным средством, в уменьшении расхода топлива и в снижении токсичности выхлопных газов. 2 ил.

2511929
выдан:
опубликован: 10.04.2014
СПОСОБ ПРЕОБРАЗОВАНИЯ ТЕПЛОТЫ В РАБОТУ В ТЕПЛОВОМ ДВИГАТЕЛЕ

Изобретение относится к способу преобразования теплоты в работу в тепловом двигателе. Способ включает выполнение рабочего тела теплового двигателя в виде смеси веществ, между которыми протекает обратимая химическая реакция. В замкнутом термодинамическом цикле рабочее тело получает теплоту от горячего источника теплоты с высокой температурой и отдает теплоту холодному источнику теплоты с низкой температурой. Давление рабочего тела периодически изменяется. Применяют постоянный теплообмен между рабочим телом и горячим и холодным источниками теплоты. В объеме рабочего тела создают градиент температуры, используя разность температур горячего и холодного источников теплоты. Работу получают в процессе периодического изменения давления рабочего тела вследствие протекания в его объеме периодической химической реакции. Изобретение направлено на повышение эффективности преобразования теплоты в работу и упрощение конструкции тепловых двигателей. 1 ил.

2511827
выдан:
опубликован: 10.04.2014
ТЕПЛОТРУБНЫЙ ВИНТОВОЙ НАГНЕТАТЕЛЬ

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных энергоресурсов и низкопотенциальной энергии природных источников. Технический результат достигается в теплотрубном винтовом нагнетателе, включающем испарительную, рабочую и конденсационную камеры, расположенные в одном цилиндрическом корпусе, внутренние поверхности верхней и нижней торцевых стенок которого соприкасаются фитилем, проходящим по центральной оси корпуса, покрытым обечайкой с образованием зазоров у верхней и нижней торцевых стенок. В испарительной и конденсационной камерах расположены направляющие пластины, соединенные с рабочей камерой, между корпусом и испарительной и конденсационной камерами существуют кольцевые зазоры, образующие горячую и холодную кольцевые рубашки с выпускными окнами. Внутренняя поверхность торцевых и боковых стенок испарительной и конденсационной камер покрыта решеткой, выполненной из тонких полос пористого материала. Рабочая камера выполнена с винтовой канавкой на наружной поверхности и соединена с испарительной и конденсационной камерами через кольцевые уплотнения, ее наружный корпус снабжен всасывающим и нагнетательным патрубками. Изобретение направлено на повышение эффективности теплотрубного винтового нагнетателя. 5 ил.

2511781
выдан:
опубликован: 10.04.2014
СИСТЕМА ТЕПЛОСНАБЖЕНИЯ И СПОСОБ ОРГАНИЗАЦИИ ЕЕ РАБОТЫ

Изобретение относится к энергетике. Система теплоснабжения включает теплогенератор, утилизационную установку, потребителя, прямую магистраль, по которой нагретая в теплогенераторе вода подается потребителю, обратную магистраль, по которой охлажденная вода транспортируется к теплогенератору, обратный клапан, мембранный насос, мембранный нагнетатель и ударный узел. Утилизационная установка заполнена рабочим телом. Также представлен способ нагрева охлажденной обратной магистральной воды теплом, выработанным теплогенератором. Изобретение позволяет сократить затраты на транспортировку теплоносителя к потребителям за счет выработки механической энергии и ее использования для транспортировки теплоносителя, а также подогревать обратную сетевую воду путем утилизации тепла дымовых газов. 2 н.п. ф-лы, 1 ил.

2510465
выдан:
опубликован: 27.03.2014
ДВИГАТЕЛЬ ВНЕШНЕГО СГОРАНИЯ

Изобретение относится к силовым установкам. Двигатель содержит первый теплообменник, второй теплообменник, первый клапан теплоносителя с входами подачи горячего и холодного теплоносителей, второй клапан теплоносителя с входами подачи горячего и холодного теплоносителей, первый и второй механизмы преобразования энергии жидкости в механическую энергию, первый, второй, третий и четвертый клапаны рабочего тела, трубопровод подачи рабочего тела из первого теплообменника, трубопровод подачи рабочего тела из второго теплообменника, емкость с рабочим телом, а также трубопроводы первого и второго теплообменников. Трубопроводы первого и второго теплообменников размещены соответственно в первом и втором теплообменниках. Выходы первого и второго клапанов теплоносителей соединены со входами соответственно первого и второго теплообменников. Трубопровод первого теплообменника через трубопровод подачи рабочего тела из первого теплообменника и через первый и второй клапаны рабочего тела соединен соответственно с первым и вторым механизмами преобразования энергии жидкости в механическую энергию. Первый и второй механизмы преобразования энергии жидкости в механическую энергию соединены с емкостью с рабочим телом. Трубопровод второго теплообменника через трубопровод подачи рабочего тела из второго теплообменника и через четвертый и третий клапаны рабочего тела соединен соответственно с первым и вторым механизмами преобразования энергии жидкости в механическую энергию. Изобретение направлено на упрощение конструкции и повышение кпд двигателя. 1 ил.

2509218
выдан:
опубликован: 10.03.2014
Наверх