ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

Конденсаторы; конденсаторы, выпрямители тока, детекторы, переключатели, светочувствительные или термочувствительные устройства электролитического типа – H01G

Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01G Конденсаторы; конденсаторы, выпрямители тока, детекторы, переключатели, светочувствительные или термочувствительные устройства электролитического типа
H01G 13/00 Устройства, специально предназначенные для изготовления конденсаторов; способы, специально предназначенные для изготовления конденсаторов, кроме предусмотренных в группах  4/00
H01G 15/00 Конструктивные комбинации конденсаторов или других устройств, отнесенных по меньшей мере к двум различным основным группам данного подкласса
H01G 17/00 Конструктивные комбинации конденсаторов или других устройств, отнесенных по меньшей мере к двум различным основным группам данного подкласса, с другими электрическими элементами, не отнесенными к данному подклассу, например RC-цепи
тонко- или толстопленочные схемы  H 01L 27/00, RC-фильтры  H 03H
H01G 2/00 Элементы конструкций, применяемые более чем в одной из групп  4/00
H01G 4/00 Конденсаторы постоянной емкости; способы их изготовления
электролитические конденсаторы  9/00
H01G 5/00 Конденсаторы, изменение емкости которых осуществляется механическим путем, например поворотом оси; способы их изготовления
H01G 7/00 Конденсаторы, емкость которых изменяется с помощью немеханических средств, и способы их изготовления
H01G 9/00 Электролитические конденсаторы, выпрямители, детекторы; переключающие устройства, светочувствительные или термочувствительные устройства; способы их изготовления

Патенты в данной категории

ПОЛИМЕРНЫЙ ПРОТОНПРОВОДЯЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Настоящее изобретение относится к полимерным протонпроводящим композиционным материалам. Описан полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта 38-69, фосфорно-вольфрамовая кислота 19-50, глицерин остальное. Технический результат - полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и максимально низкой электронной составляющей проводимости, обеспечивающий улучшение мощностных характеристик суперконденсаторов или других приборов твердотельной электроники, и увеличение длительности хранения их заряда. 2 табл., 13 пр.

2529187
выдан:
опубликован: 27.09.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА

Изобретение относится к области технологий изготовления пленочных электретов и может быть использовано, например, при производстве биполярных электретных микрофонов и нового класса пьезодатчиков на основе ламинированных электретных пленок, обладающих гигантским пьезомодулем (до 1000 пКл/Н). Целью изобретения является повышение величины и стабильности поверхностной плотности положительного заряда в пленочных фторполимерах. Это достигается тем, что в способе изготовления пленочного электрета, включающем нанесение на металлический электрод слоя фторполимера, нанесение на поверхность фторполимера дискретного слоя, состоящего из изолированных друг от друга наноразмерных агрегатов титансодержащих наноструктур, и последующее электретирование в положительном коронном разряде, перед нанесением титансодержащих наноструктур поверхность фторполимера обрабатывают плазмой высокочастотного емкостного разряда в атмосфере насыщенного водяного пара. Использование данного технического решения позволяет не менее чем в 1.45 раза увеличить поверхностную плотность положительного заряда во фторполимерах, а также повысить временную и термостабильность заряда. 2 ил., 5 пр.

2528618
выдан:
опубликован: 20.09.2014
СПОСОБ ПРОПИТКИ СЛЮДОБУМАЖНЫХ КОНДЕНСАТОРОВ

Изобретение относится к области электротехники и может быть использовано для производства слюдобумажных конденсаторов и других электротехнических изделий. Техническим результатом является повышение надежности слюдобумажных конденсаторов. Способ включает прессование, размещение пропиточного состава в первой зоне вакуумной установки, размещение контейнеров со слюдобумажными конденсаторами во второй зоне вакуумной установки, проведение теплоизоляции первой и второй зон вакуумной установки друг от друга, сушку в вакууме контейнеров со слюдобумажными конденсаторами, сушку пропиточного состава, заполнение контейнеров со слюдобумажными конденсаторами пропиточным составом путем его заливки из первой во вторую зону вакуумной установки, пропитку при атмосферном давлении, термообработку по ступенчатому режиму, при этом первую зону вакуумной установки располагают над второй зоной вакуумной установки, после сушки в вакууме контейнеров со слюдобумажными конденсаторами температуру во второй зоне вакуумной установки понижают до температуры сушки пропиточного состава 95±5°C, одновременно в вакууме в первой зоне вакуумной установки проводят сушку пропиточного состава при температуре 95±5°C. 3 з.п. ф-лы, 2 ил.

2528014
выдан:
опубликован: 10.09.2014
ТВЕРДОТЕЛЬНЫЙ СУПЕРКОНДЕНСАТОР НА ОСНОВЕ МНОГОКОМПОНЕНТНЫХ ОКСИДОВ

Предложенное изобретение относится к области электротехники, а именно к твердотельным суперконденсаторам на основе многокомпонентных оксидов. Увеличение емкости и плотности запасаемой энергии и уменьшение токов утечки конденсатора является техническим результатом изобретения. Суперконденсатор содержит два электрода и размещенный между ними диэлектрический слой, при этом нижний электрод выполнен из материала с большой удельной площадью поверхности, диэлектрический слой конформно и однородно расположен на нижнем электроде, верхний электрод конформно и однородно расположен на диэлектрическом слое и выполнен из оксида цинка, легированного алюминием, при этом диэлектрический слой выполнен из многокомпонентного оксида, содержащего смесь по меньшей мере двух оксидов, выбранных из ряда TiO2, НfO3, ZrO2, Аl 2О3, Та2O5, Nb2 O5, Y2О3 и оксидов элементов из группы лантаноидов, и выполнен таким образом, что относительная диэлектрическая проницаемость активного диэлектрического слоя находится в интервале 10-30. Предложенный твердотельный конденсатор может найти применение в электромобилях, где может располагаться на внутренней поверхности кузова и служить идеальным источником питания в экстремальных условиях. 1 з.п. ф-лы, 3 ил., 5 пр.

2528010
выдан:
опубликован: 10.09.2014
ПЛЕНОЧНЫЙ КОНДЕНСАТОР

Предложенное изобретение относится к области электротехники, а именно к композитным пленочным электролитическим конденсаторам. Пленочный конденсатор содержит токосъемник - алюминиевую фольгу, поверхность которой через барьерный слой развита посредством электродного материала из губчатого вентильного металла, пропитанного электролитом. Новым является то, что электродный материал выполнен многослойным, каждый композитный слой которого представляет собой пленочную основу с рифлениями 50-100 нм из губчатого титана толщиной 50-100 мкм, несущую на поверхности локальные шипы из нанокластеров вентильного металла для электроконтакта в примыкании между собой, при этом, начиная со второго, слой губчатого титана выполнен со сквозными порами размером 0,3-5 мкм суммарным объемом не менее 10-15% объема слоя, при том, что конформный слой пористого титана с барьерным слоем на поверхности токосъемника связан гетеропереходом из композитных наночастиц, а барьерный слой на поверхности алюминиевой фольги выполнен из нитрида титана или алмазоподобного нанослоя из аморфного углерода -С:Н, которые связаны между собой посредством адгезионной прослойки, образованной противным распределением материалов примыкающих слоев, взаимно дополняющих друг друга по толщине. Повышение удельной емкости пленочного конденсатора является техническим результатом изобретения. 2 з.п. ф-лы, 3 ил.

2525825
выдан:
опубликован: 20.08.2014
СУПЕРКОНДЕНСАТОР

Изобретение относится к области электротехники и может быть использовано в приборах мобильной связи в качестве источника постоянного тока многократного использования. Предложенный суперконденсатор выполнен в виде тонкопленочной структуры, содержащей электроды, разделенные пленочным слоем твердого электролита, при этом, в качестве твердого электролита выбран диоксид циркония, стабилизированного иттрием, один из электродов представляет собой наночастицы графена, а второй проводящий полимер - полипиррол. Повышение удельной энергии конденсатора является техническим результатом изобретения. 1 ил.

2523425
выдан:
опубликован: 20.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА

Изобретение относится к области электротехники, а именно к способу изготовления полимерных пленочных электретов, которые могут быть использованы при производстве биполярных электретных микрофонов и пьезодатчиков на основе ламинированных электретных пленок, обладающих стабильным зарядом. Заявленный способ включает нанесение на металлический электрод слоя фторполимера, нанесение на поверхность фторполимера дискретного слоя, состоящего из изолированных друг от друга наноразмерных агрегатов из титансодержащих наноструктур, и последующее электретирование в положительном коронном разряде, при этом перед нанесением титансодержащих наноструктур поверхность фторполимера трибоэлектризуют диэлектрическим контртелом, сообщая поверхности отрицательный заряд. Повышение величины и стабильности поверхностной плотности положительного заряда пленочного фторполимерного электрета является техническим результатом заявленного изобретения. 2 ил., 2 пр.

2523337
выдан:
опубликован: 20.07.2014
ЕМКОСТНЫЙ ПРИБОР И РЕЗОНАНСНАЯ СХЕМА

Заявленное изобретение относится к области электротехники и направлено на предотвращение изменения емкости при смещении электродов, расположенных один напротив другого через слой диэлектрика. Емкостный прибор согласно изобретению содержит слой (10) диэлектрика, первый электрод (11), выполненный на заданной поверхности (10а) слоя (10) диэлектрика, и второй электрод (12), выполненный на противоположной поверхности (10b) слоя (10) диэлектрика. Первый и второй электроды (11, 12) выполнены такой формы, чтобы даже в случае смещения первого электрода (11) в заданном направлении относительно второго электрода (12) площадь перекрывающейся области противоположных электродов между первым электродом (11) и вторым электродом (12) оставалась неизменной. Повышение стабильности работы емкостных приборов с переменной емкостью является техническим результатом заявленного изобретения. 2 н. и 12 з.п. ф-лы, 61 ил.

2523065
выдан:
опубликован: 20.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ СЕГНЕТОЭЛЕКТРИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к технологии изготовления конденсаторов с диэлектриком из керамики на основе титаната бария. Способ изготовления сегнетоэлектрических конденсаторов включает формование керамической подложки, преимущественно на основе титаната бария, нанесение легирующего покрытия, вакуумное напыление медных электродов и вакуумный отжиг композитного материала, при этом легирующее покрытие наносят в жидкой фазе путем конденсации из парового потока испаренных в вакууме металлов, выбранных из ряда: титан, ванадий, хром, марганец, ниобий, при температуре подложки 150-350°С, после чего подложку с легирующим покрытием подвергают вакуумному отжигу, а последующее нанесение медных электродов проводят непосредственно на нагретую до температуры не выше 600°С композитную подложку. Предложенное техническое решение обеспечивает повышение удельной емкости сегнетокерамического конденсатора, а также устойчивость к пробивному напряжению без диэлектрических потерь.1 табл., 2 пр.

2523000
выдан:
опубликован: 20.07.2014
СУПЕРКОНДЕНСАТОР С НЕОРГАНИЧЕСКИМ КОМПОЗИЦИОННЫМ ТВЕРДЫМ ЭЛЕКТРОЛИТОМ (ВАРИАНТЫ)

Заявленное изобретение относится к области электротехники, а именно к устройству накопления энергии в виде суперконденсатора с неорганическим композиционным твердым электролитом. Заявленный суперконденсатор выполнен из композита, содержащего наноразмерный оксид LiMn2-хМехO4 , где Me=Ni2+, Mn3+, а также композиционного твердого электролита и электропроводящей сажи, в случае симметричного выполнения суперконденсатора. В случае ассиметричного выполнения суперконденсатора, отрицательный электрод выполнен из наноразмерного оксида марганца МnО2 и отделен твердым электролитом на основе перхлората лития 0.4LiСlО4 - 0.6Al2 O3. Суперконденсатор также содержиттокоподвод, выполненный из двух пластин металлического никеля, закрепленных на внешних сторонах электродов. Повышение удельной электрической емкости суперконденсатора, до 25 Ф/г, в широком диапазоне температур Траб=25-250°С, является техническим результатом изобретения. 2 н.п. ф-лы, 1 ил.

2522947
выдан:
опубликован: 20.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ТОКОСНИМАЮЩЕЙ ФОЛЬГИ И ТОКОСНИМАЮЩАЯ ФОЛЬГА СУПЕРКОНДЕНСАТОРОВ

Изобретение относится к области электротехники, а именно к способу изготовления токоснимающей фольги суперконденсатора с двойным электрическим слоем (КДЭС). Техническим результатом изобретения является повышение мощности суперконденсатора за счет снижения паразитного контактного сопротивления на границе электрода и токосъемника. Способ изготовления токоснимающей фольги включает нанесение методом физического осаждения из плазмы магнетронного разряда водорода на поверхность алюминиевой конденсаторной фольги с двух сторон, последовательно, в два этапа, слоев каталитического вещества и углеродной развитой вертикально-ориентированной столбчатой наноструктуры в виде плотно собранных вдоль поверхности алюминиевой основы пучков в виде отдельных несомкнутых волокон. Указанная углеродная наноструктура является произрастающей из каталитического подслоя и служит буферным слоем на границе между токоснимающей пластиной и поверхностью пористого графитового электрода суперконденсатора, что обеспечивает снижение контактного сопротивления, а также позволяет существенно снизить вес и стоимость суперконденсатора. 2 н. и 1 з.п. ф-лы, 3 ил.

2522940
выдан:
опубликован: 20.07.2014
СПОСОБ ФОРМИРОВАНИЯ ЭЛЕКТРОПРОВОДЯЩИХ СЛОЕВ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК

Заявляемое изобретение относится к области электрической техники, в частности к способам создания электропроводящих слоев, применяемых в широких областях техники, в том числе в электронике или электротехнике, и может быть использовано для создания проводящих соединений в микросхемах. Способ формирования электропроводящих слоев на основе углеродных нанотрубок включает нанесение на подложку суспензии, содержащей углеродные нанотрубки и раствор карбоксиметилцеллюлозы в воде при следующем соотношении компонентов, мас.%: карбоксиметилцеллюлоза 1-10 и углеродные нанотрубки 1-10, сушку при температуре от 20 до 150°С, пиролиз при температуре выше 250°С. Технический результат заключается в повышении электропроводности формируемых слоев. 3 з.п. ф-лы, 1 табл.

2522887
выдан:
опубликован: 20.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРЕТОВ

(57) Изобретение относится к области электротехники, в частности к способу изготовления электретов, и может быть использовано в медицине для изготовления костных имплантатов, применяемых в хирургии для лечения переломов костей и артрозов суставов. Предложенный способ изготовления электретов обеспечивает зарядку наружной поверхности изделия-электрета сложной конфигурации, основа которого изготовлена из тантала, со всех сторон покрытого тонким слоем оксида тантала, путем создания разности потенциалов между проводящей основой и наружной поверхностью изделия через жидкостной контакт, для чего указанное изделие при разности потенциалов погружают в емкость с жидкостью и затем извлекают из нее. Также в заявленном способе предусмотрено изменение величины разности потенциалов при извлечении изделия из жидкости и изменение уровня жидкости относительно изделия, при этом указанная жидкость представляет собой смесь воды и этилового спирта. Предложенный способ позволяет получать на поверхности имплантата сложной формы электретный слой при заданном распределении потенциала по всей поверхности изделия за один проход, т.е. при одном извлечении изделия из жидкости, что является техническим результатом предложенного изобретения. 4 з.п. ф-лы, 1 ил.

2521598
выдан:
опубликован: 10.07.2014
НАНОСТРУКТУРНЫЙ ЭЛЕКТРОД ДЛЯ ПСЕВДОЕМКОСТНОГО НАКОПЛЕНИЯ ЭНЕРГИИ

Предложена нанопористая матричная структура, представляющая собой подложку из анодированного оксида алюминия (АОА), которую используют для создания псевдоконденсатора с высокой плотностью накапливаемой энергии. Псевдоемкостный материал конформно осаждают по боковым стенкам подложки АОА путем атомно-слоевого осаждения, химического осаждения из паровой фазы и/или электрохимического осаждения с использованием слоя зародышеобразования. Толщина псевдоемкостного материала на стенках может точно регулироваться в процессе осаждения. АОА подвергают травлению, чтобы сформировать массив цилиндрических и структурно устойчивых нанотрубок из псевдоемкостного материала с выполненными в них полостями. Поскольку подложку из АОА, которая действует как несущий каркас, удаляют, и остается только активный псевдоемкостный материал, тем самым доводится до максимума энергия на единицу массы. Кроме того, нанотрубки могут быть отделены от подложки, и для получения электрода псевдоконденсатора на проводящую подложку могут быть осаждены свободно располагающиеся нанотрубки с рандомизированой ориентацией. 2 н. и 22 з.п. ф-лы, 20 ил.

2521083
выдан:
опубликован: 27.06.2014
СПОСОБ ЭКСПЛУАТАЦИИ ЭЛЕКТРОХИМИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к области электротехники и касается способа эксплуатации электрохимических конденсаторов. Предложенный способ включает подключение конденсатора к источнику тока, проведение его заряда до заданного напряжения, прекращение заряда и разряд, при этом предварительно измеряют температуру конденсатора, по которой определяют максимальное рабочее напряжение заряда, исключающее газовыделение, и рассчитывают максимальное зарядное напряжение Umax, которое ограничивают в соответствие с уравнением Umax=k·t+b, где k и b - коэффициенты, определяемые экспериментально и зависящие от особенностей конструкции конденсатора, t - температура, при этом для измерения коэффициентов k и b рассчитывают ток непрерывного подзаряда. Изобретение позволяет обеспечить повышение мощности конденсатора и длительности срока его службы при безопасности эксплуатации путем оптимизации условий его заряда, что является техническим результатом изобретения. 2 ил., 1 табл., 2 пр.

2520183
выдан:
опубликован: 20.06.2014
НАНОКОМПОЗИТНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОНДЕНСАТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к электротехнике, в частности, к производству электрохимических конденсаторов. Нанокомпозитный электрохимический конденсатор состоит из двух и более электродов, электролитов, сепараторов и коллекторов тока, размещенных в термостатируемом объеме; при этом каждая пара электрод и электролит представляют собой нанокомпозит, выполненный из наноуглеродного материала и твердого ионного органического или неорганического соединения эвтектического состава, при этом электроды выполнены из наноуглеродного материала с удельной поверхностью выше 1300 м2/г в виде пластин или листов толщиной 0,1-10мм и плотностью 0,8-1,2 г/см3. Способ изготовления конденсатора включает диспергирование приготовленной электродной смеси со связующим; прессование пластин или листов из диспергированной со связующим электродной смеси, отжига прессованных пластин или листов в окислительной и/или восстановительной атмосфере или под вакуумом и пропитку компактированных электродов в расплаве или растворе электролита при высокой температуре и под вакуумом с последующим охлаждением. Улучшение удельной энергоемкости заявленного электрохимического конденсатора является техническим результатом изобретения. 2 н. и 18 з.п. ф-лы, 6 ил.

2518150
выдан:
опубликован: 10.06.2014
СПОСОБ СПЕКАНИЯ ИЗДЕЛИЙ ДИЭЛЕКТРИЧЕСКОЙ КЕРАМИКИ

Изобретение относится к области технологии материалов. Техническим результатом является обеспечение высокой скорости спекания и равномерной усадки спекаемой диэлектрической керамики. Способ спекания содержит операции компактирования порошка и облучения более одной стороны компакта электронными пучками, формирование электронных пучков с энергией 10-15 кэВ производят отдельными источниками, а облучение компакта осуществляют при давлении газа 5-20 Па. Температуру компакта при облучении задают плотностью мощности пучков. Формирование пучков отдельными источниками в сочетании с давлением газа 5-20 Па. 1 ил.

2516532
выдан:
опубликован: 20.05.2014
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ ОКСИДНО-ПОЛУПРОВОДНИКОВОГО КОНДЕНСАТОРА

Изобретение относится к области электротехники, а именно к технологии нанесения покрытия из диоксида марганца на оксидированные объемно-пористые аноды вентильного металла, например тантала, ниобия. Способ получения катодной обкладки оксидно-полупроводникового конденсатора заключается в нанесении многослойного катодного покрытия из диоксида марганца на оксидированный объемно-пористый анод из вентильного металла и включает в себя многократные циклы пропитки-пиролиза анодов с использованием пропитывающего водного раствора с возрастающей от цикла к циклу концентрацией нитрата марганца с добавкой азотной кислоты в качестве активного негалогенированного окисляющего реагента в количестве, обеспечивающем в пропитывающем растворе величину рН 1, не более, и водяного пара во время пиролиза, а также в подформовке анодов после получения каждого слоя диоксида марганца и финишной обработке сформированного многослойного покрытия из диоксида марганца парами азотной кислоты при повышенной температуре 55-70°С в течение не менее 1 минуты. Техническим результатом заявленного изобретения являются стабильные улучшенные электрические характеристики конденсатора, в том числе низкое эквивалентное последовательное сопротивление, а также увеличение выхода годных изделий при сокращении расхода материалов и энергоресурсов. 2 табл., 2 ил., 6 пр.

2516525
выдан:
опубликован: 20.05.2014
УСТРОЙСТВО ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ

Предложенное изобретение относится к устройству преобразования солнечной энергии в электрическую и основано на поглощающем свет электроде, соединенном с одномерным фотонным кристаллом, выполненным на основе наночастиц. Функция последнего состоит в том, чтобы локализовать падающий свет внутри электрода, таким образом увеличивая оптическое поглощение и эффективность преобразования энергии так называемого сенсибилизированного красителем и органического на полимерной основе или гибридного элемента. Фотонный кристалл содержит чередующиеся слои, обладающие разным показателем преломления, и может быть легко интегрирован в элемент. Свойства фотонного кристалла могут быть достигнуты путем регулирования распределения размеров наночастиц, которые образуют каждый слой с различной пористостью и, следовательно, показателем преломления, что позволяет в широком диапазоне длин волн улучшить оптическое поглощение и эффективность преобразования энергии. 8 н. и 5 з.п. ф-лы, 7 ил.

2516242
выдан:
опубликован: 20.05.2014
ВАКУУМНЫЙ КОНДЕНСАТОР ПЕРЕМЕННОЙ ЕМКОСТИ

Изобретение относится к области электронной техники и может быть использовано при модернизации выпускаемых и разработке новых типов вакуумных конденсаторов. Вакуумный конденсатор переменной емкости содержит вакуумированный корпус, состоящий из цилиндрической диэлектрической оболочки, соединенной торцовыми поверхностями с внешними выводами, внутри которой размещены пакеты неподвижных и подвижных цилиндрических коаксиальных емкостных электродов, внутренние электроды представляют центральный и смежный электроды емкостного блока, один из которых соединен с внешним выводом, а другой смонтирован на штоке, имеющем возможность возвратно-поступательного передвижения по направляющей втулке с обеспечением герметизации конденсатора за счет использования металлического сильфона, соединенного с основанием подвижного пакета и вторым внешним выводом. Центральный емкостный цилиндрический коаксиальный электрод выполнен из материала с температурным коэффициентом линейного расширения (ТКЛР), меньшим по величине, чем ТКЛР смежного емкостного электрода, перекрытие электродов, радиальное расстояние между ними и ТКЛР материала центрального электрода рассчитаны исходя из равенства величин изменения емкости между центральным и смежным электродами и изменения емкости, создаваемой остальными емкостными электродами при нагреве. Техническим результатом является повышение температурной стабильности. 1 з.п. ф-лы, 3 ил.

2510694
выдан:
опубликован: 10.04.2014
РЕЗОНАНСНЫЙ ЭЛЕКТРИЧЕСКИЙ КОНДЕНСАТОР СТРЕБКОВА-ПОДОСИННИКОВА (ВАРИАНТЫ)

Изобретение относится к области электротехники, в частности к области резонансных высокочастотных электрических конденсаторов для преобразования и передачи электрической энергии. Технический результат заключается в снижении энергетических затрат на генерирование электромагнитных волн и потерь при передаче электрической энергии. Технический результат достигается тем, что в электрическом конденсаторе, содержащем обкладки в виде лент из проводящего материала, слой пленочного диэлектрика, расположенного между обкладками, и электроды, соединенные с обкладками и внешними выводами конденсатора, электрический конденсатор содержит две обкладки с тремя электродами, причем первый электрод присоединен к середине первой обкладки, а вторая обкладка имеет два электрода, присоединенных к концам обкладки.4 н.и 7 з.п. ф-лы, 8 ил.

2509388
выдан:
опубликован: 10.03.2014
СОСТАВНАЯ ЕМКОСТЬ И ЕЕ ПРИМЕНЕНИЕ

Составной емкостный компонент содержит множество физически различных конденсаторных модулей, которые электрически соединены друг с другом. Различные модули обеспечивают повышенную электрическую и/или геометрическую гибкость при проектировании емкостного компонента. Каждый из конденсаторных модулей содержит множество базовых конденсаторов, установленных на специальной модульной плате печатного монтажа (PCB). Все базовые конденсаторы конденсаторных модулей являются идентичными, что упрощает как производство, так и обслуживание емкостного компонента. Формирование составной емкости на базовых конденсаторах одного типа значительно упрощает как их изготовление, так и обслуживание. Пространственная гибкость, достигаемая благодаря применению множества электрически взаимно соединенных конденсаторных модулей, является предпочтительным в таких силовых устройствах, где объем, доступный для емкостного компонента внутри устройства, может быть ограничен, по меньшей мере, в одном направлении. Геометрически гибкая компоновка, обеспечиваемая отдельными конденсаторными модулями, позволяет их располагать под произвольным углом друг к другу и таким образом занимать свободное пространство в силовых устройствах, увеличивая их составную емкость. 2 н. и 6 з.п. ф-лы, 8 ил.

2508574
выдан:
опубликован: 27.02.2014
ЭЛЕКТРОХИМИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ИНФОРМАЦИИ

Изобретение относится к электрохимическим преобразователям информации (ЭХПИ) концентрационного типа, предназначенным, в том числе, для преобразования колебательных процессов механической природы в электрические сигналы. Техническим результатом является создание такой конструкции ЭХПИ, в которой было бы блокировано негативное влияние вымываемых из деталей ЭХПИ микропримесей, засоряющих рабочие катоды и выводящих ЭХПИ из строя. Электрохимический преобразователь информации содержит заполненный электролитом полый корпус, закрытый с торцов упругими мембранами и разделенный перегородкой с каналом, в котором установлены рабочие катоды, на две подмембранные камеры с анодами, и источник постоянного тока, минусы которого подключены к катодам, а плюсы - к анодам. Новым в предлагаемом электрохимическом преобразователе является то, что в подмембранные камеры дополнительно установлены между анодами и рабочими катодами катоды очистки, площади которых значительно больше площади рабочих катодов, при этом на время проведения технологического испытательного цикла при отключенных рабочих катодах катоды очистки подключают к минусу источника тока. 1 ил.

2504038
выдан:
опубликован: 10.01.2014
СПОСОБ ТРАНСФОРМАЦИИ ЭЛЕКТРОЭНЕРГИИ, УСТРОЙСТВО ДЛЯ ЕГО ФУНКЦИОНИРОВАНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВА

Изобретение относится к способам и устройствам преобразования электроэнергии (трансформаторам), а также к переключателям с прямолинейным движением органа управления. Технический результат заключается в упрощении устройства путем исключения магнитопровода. Преобразование энергии происходит без стального сердечника с помощью электрического и магнитного полей. В связи с этим устройство может найти самое широкое применение для преобразования энергии сверх высоких частот, в частности преобразования входной частоты в выходную. 2 н.п. ф-лы, 3 ил.

2504037
выдан:
опубликован: 10.01.2014
ТРИАЛКОКСИСИЛАНЫ, СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ НА ОСНОВЕ ПОЛИЭТИЛЕНДИОКСИТИОФЕНА С СИЛАНОВЫМ ПОДСЛОЕМ И ОКСИДНЫЙ КОНДЕНСАТОР С ТАКОЙ КАТОДНОЙ ОБКЛАДКОЙ

Изобретение относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твердым электролитом на основе полимера. Предложены триалкоксисиланы общей формулы I, где R1 - Si(OAlk)3 или R1=-CH=N-CH2CH2CH2 Si(OAlk)3, R2=R3=-OCH2 CH2O-, в качестве кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала, а также применение триэтокси-2-тиенилсилана по тому же назначению. Предложены также способ получения катодной обкладки из полимерного электролита с использованием заявленных триалкоксисиланов и оксидный конденсатор с твердым электролитом, содержащий секцию из объемно-пористого анода из вентильных металлов с поверхностным слоем, полученным с использованием заявленных триалкоксисиланов. Технический результат - получение конденсатоорв с улучшенными техническими и эксплуатационными характеристиками. 4 н.п. ф-лы, 1 ил., 1 табл., 3 пр.

2500682
выдан:
опубликован: 10.12.2013
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОДА СУПЕРКОНДЕНСАТОРА

Изобретение относится к способу получения композитного материала для электрода суперконденсатора, включающему синтез электропроводящих полимеров или их замещенных производных в процессе окислительной полимеризации соответствующих мономеров на поверхности углеродных материалов. Экологически приемлемый способ заключается в том, что полимеризацию проводят в присутствии растворенных в реакционной смеси фермента лакказы, кислых допантов, окислителя и редокс-медиатора ферментативной реакции. 9 з.п. ф-лы, 4 пр.

2495509
выдан:
опубликован: 10.10.2013
СПОСОБ ПОЛУЧЕНИЯ ЧАСТИЦ ТВЕРДОГО ЭЛЕКТРОЛИТА Li1+xAlxTi2+x(PO4)3 (0,1 x 0,5)

Изобретение относится к способу получения частиц твердого электролита Li1+xAlxTi2-x (PO4)3 (0,1 x 0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NH4H2PO4 или фосфорную кислоту, и второго раствора, содержащего соединение титана и растворитель, с образованием азотнокислого коллективного раствора, нагревание коллективного раствора с получением прекурсора и его прокалку. При этом в качестве растворителя во втором растворе используют пероксид водорода, а в качестве соединения титана - пероксидный комплекс титана, азотную кислоту дополнительно вводят во второй раствор до обеспечения рН коллективного раствора не более 2, нагревание коллективного раствора ведут при 150-170°С с разложением пероксидного комплекса титана и получением аморфного прекурсора, а прокалку прекурсора осуществляют при 600-800°С. Способ позволяет синтезировать частицы электролита со средним размером 215-280 нм, а полученный на их основе твердый электролит является монофазным и имеет ионную проводимость до 6,3·10 -4 См/см при комнатной температуре. Способ имеет пониженную энергоемкость и повышенную экологичность. 2 з.п. ф-лы, 3 пр.

2493638
выдан:
опубликован: 20.09.2013
СУПЕРКОНДЕНСАТОР С МНОЖЕСТВОМ ДОРОЖЕК

Объектом изобретения является суперконденсатор, содержащий по меньшей мере два находящихся рядом друг с другом комплекса (1, 2), разделенные расстоянием d, и по меньшей мере один общий комплекс (3) напротив двух находящихся рядом друг с другом комплексов (1, 2), отделенный от них по меньшей мере одним разделителем (4), при этом разделитель (4) и комплексы (1, 2, 3) намотаны спиралевидно вместе, образуя намотанный элемент. Снижение сопротивления системы и увеличение допустимой энергии на единицу объема, а также повышение срока службы заявленного комплекса является техническим результатом заявленного изобретения. 2 н. и 25 з.п. ф-лы, 15 ил., 1 табл.

2493629
выдан:
опубликован: 20.09.2013
СУПЕРКОНДЕНСАТОР С МНОЖЕСТВОМ ОБМОТОК

Объектом настоящего изобретения является суперконденсатор с двойным электрохимическим слоем, содержащий по меньшей мере два комплекса (2, 3) и по меньшей мере один разделитель (4) между ними, при этом комплексы (2, 3) и разделитель (4) намотаны вместе спиралевидно, образуя намотанный элемент (10). Согласно изобретению суперконденсатор дополнительно содержит по меньшей мере один другой комплекс (1) и по меньшей мере один другой разделитель (4), при этом другой комплекс (1) и другой разделитель (4) намотаны вместе спиралевидно вокруг намотанного элемента (10), образуя по меньшей мере один последующий намотанный элемент (20), причем эти последовательно намотанные элементы (10, 20) разделены электроизолирующим пространством. Снижение сопротивления между двумя последовательно соединенными звеньями суперконденсатора, а также повышение объемной и массовой плотности энергии, является техническим результатом предложенного изобретения. 2 н. и 31 з.п. ф-лы, 28 ил.

2492542
выдан:
опубликован: 10.09.2013
УСТРОЙСТВО ЗАЩИТЫ ОТ ПРЕВЫШЕНИЯ ДАВЛЕНИЯ ДЛЯ СУПЕРКОНДЕНСАТОРА

Объектом изобретения является устройство защиты против превышения давления для суперконденсатора. В суперконденсаторе, содержащем закрытую камеру, которая оборудована средствами (10) обмена газом с внешней средой и в которой установлены два электрода с большой удельной поверхностью, разделенные разделителем, разделитель и электроды пропитаны электролитом, при этом средства газообмена содержат мембрану, проницаемую по отношению к водороду и к его изотопам и непроницаемую по отношению к другим газообразным веществам, которые имеют эффективное сечение, превышающее или равное 0,3 нм, при температуре от -50°C до 100°C. Увеличение скорости селективного удаления водорода, образующегося внутри суперконденсатора, одновременно препятствуя проникновению другого газа снаружи внутрь суперконденсатора, является техническим результатом изобретения. 23 з.п. ф-лы, 9 ил., 4 табл., 5 пр.

2492541
выдан:
опубликован: 10.09.2013
Наверх