ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

Выращивание монокристаллов конденсацией испаряемого или сублимируемого материала – C30B 23/00

Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C30 Выращивание кристаллов
C30B Выращивание монокристаллов; направленная кристаллизация эвтектик или направленное расслаивание эвтектоидов; очистка материалов зонной плавкой; получение гомогенного поликристаллического материала с определенной структурой; монокристаллы или гомогенный поликристаллический материал с определенной структурой; последующая обработка монокристаллов или гомогенного поликристаллического материала с определенной структурой; устройства для вышеуказанных целей
C30B 23/00 Выращивание монокристаллов конденсацией испаряемого или сублимируемого материала
C30B 23/02 .выращивание эпитаксиальных слоев
C30B 23/04 ..отложение образцов, например с использованием защитных слоев
C30B 23/06 ..нагревание камеры для осаждения, подложки или испаряемого материала
C30B 23/08 ..конденсацией ионизированных паров
разбрызгиванием продуктов реакции  25/06

Патенты в данной категории

СПОСОБ ПОЛУЧЕНИЯ АЛМАЗОПОДОБНЫХ ПОКРЫТИЙ КОМБИНИРОВАННЫМ ЛАЗЕРНЫМ ВОЗДЕЙСТВИЕМ

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям. Алмазоподобные покрытия получают в вакууме путем распыления материала мишени импульсным лазером. На материал мишени, выполненной из графита высокой степени чистоты (более 99.9%), воздействуют комбинированным лазерным излучением: сначала коротковолновым (менее 300 нм) импульсным излучением, в качестве источника которого используют KrF-лазер с длиной волны 248 нм и удельной энергией 5·107 Вт/см2, в результате чего осуществляется абляция и образуется газоплазменная фаза материала мишени. Последующее воздействие на газоплазменное облако во время разлета облака от мишени к подложке осуществляют длинноволновым (более 1 мкм) лазерным излучением. В качестве источника длинноволнового лазерного излучения используют газовый CO2-лазер или твердотельный волоконный лазерный излучатель. Технический результат изобретения заключается в увеличении алмазной фазы в получаемом покрытии и увеличении энергетического спектра плазмы на стадии ее разлета. 2 з.п. ф-лы, 1 ил.

2516632
выдан:
опубликован: 20.05.2014
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИХ ПОЛИКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ СЕЛЕНИДА ЦИНКА

Изобретение относится к области технологии материалов для оптоэлектроники конструкционной оптики, которые могут быть использованы для изготовления оптических элементов ИК-техники. Способ включает подготовку шихты на основе селенида цинка, помещение ее в реактор, вакуумирование до давления 10-5 -10-4 мм.рт.ст., нагрев зоны испарения реактора до температуры испарения, пропускание паров ZnSe через фильтр с последующим их осаждением на подложку, имеющую температуру ниже температуры испарения, и последующие охлаждение реактора с заготовкой до комнатной температуры, при этом в качестве шихты используют смесь селенида цинка с элементарным селеном при следующих масс %: селенид цинка - 90-99, элементарный селен - 1-10, зону испарения реактора нагревают до температуры испарения 1000-1200°С, охлаждение ведут со скоростью 25-30°С/ч. Изобретение позволяет получать материал с контролируемым стехиометрическим соотношением элементов и высоким оптическим качеством заготовок, обладающих низким поглощением в рабочем диапазоне. 1 табл.

2516557
выдан:
опубликован: 20.05.2014
СПОСОБ СОЗДАНИЯ НА ПОДЛОЖКАХ МОНОКРИСТАЛЛИЧЕСКИХ ПЛЕНОК ТВЕРДОГО РАСТВОРА ВИСМУТ-СУРЬМА

Изобретение относится к материаловедению и может быть использовано в физике конденсированного состояния, приборостроении, микроэлектронике, термоэлектричестве для получения тонкопленочных образцов твердого раствора висмут-сурьма с совершенной монокристаллической структурой. Сущность изобретения заключается в том, что для получения монокристаллических пленок твердого раствора висмут-сурьма используют зонную перекристаллизацию сформированных путем напыления в вакууме однородных по составу поликристаллических пленок твердого раствора висмут-сурьма под защитным покрытием, температура плавления которого больше температуры плавления получаемой пленки, при большей скорости движения зоны, чем при выращивании объемных монокристаллов (для пленок твердых растворов висмут-сурьма более 1 см/ч против 0,05 мм/ч для объемных кристаллов). Изобретение обеспечивает получение монокристаллических пленок твердого раствора висмут-сурьма с равномерным распределением компонентов по объему.

2507317
выдан:
опубликован: 20.02.2014
СПОСОБ ПОЛУЧЕНИЯ БОЛЬШИХ ОДНОРОДНЫХ КРИСТАЛЛОВ КАРБИДА КРЕМНИЯ С ИСПОЛЬЗОВАНИЕМ ПРОЦЕССОВ ВОЗГОНКИ И КОНДЕНСАЦИИ

Изобретение может быть использовано в изготовлении полупроводниковых материалов. Способ получения монолитных кристаллов карбида кремния включает i) помещение смеси, содержащей крошку поликристаллического кремния и порошок углерода, на дно цилиндрической реакционной камеры, имеющей крышку; ii) герметизацию цилиндрической реакционной камеры; iii) помещение цилиндрической реакционной камеры в вакуумную печь; iv) откачивание из печи воздуха; v) заполнение печи смесью газов, которые по существу являются инертными газами, до приблизительно атмосферного давления; vi) нагревание цилиндрической реакционной камеры в печи до температуры от 1975 до 2500°С; vii) снижение давления в цилиндрической реакционной камере до менее 50 Торр, но не менее 0,05 Торр; и viii) осуществление сублимации и конденсации паров на внутренней части крышки цилиндрической реакционной камеры. Изобретение позволяет получить большие кристаллы карбида кремния, создать воспроизводимый способ выращивания кристаллов с высокой степенью чистоты. 2 н. и 14 з.п. ф-лы, 2 пр., 2 табл.

2495163
выдан:
опубликован: 10.10.2013
КОМПОЗИЦИОННЫЙ ОПТИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к оптико-механической промышленности, в частности к оптическим материалам, применяемым в устройствах и приборах инфракрасной техники, и может быть использовано для изготовления защитных входных люков (окон), обеспечивающих надежное функционирование приборов. Композиционный оптический материал включает основу в виде прозрачной пластины-подложки, выполненной из ZnSe, выращенной методом химического осаждения пара (CVD), на полированную поверхность которой нанесен защитный слой ZnS, который получен методом физического осаждения пара (PVD), причем сцепление пластины-подложки ZnSe с защитным слоем ZnS обеспечено оптически прозрачным переходным слоем в виде непрерывного ряда твердых растворов ZnSexS1-x, где x изменяется от 0 до 1 за счет взаимодиффузии серы и селена, соответственно, в слои ZnSe и ZnS. Композиционный оптический материал ZnSe/ZnS обладает улучшенной прозрачностью в видимой и ближней области спектра при сохранении высокой механической прочности подложки ZnSe, повышенной адгезией слоя ZnS к подложке при сохранении величины микротвердости слоя ZnS. 2 н.п. ф-лы, 1 ил., 1 пр.

2485220
выдан:
опубликован: 20.06.2013
УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА МОНОКРИСТАЛЛИЧЕСКОГО НИТРИДА АЛЮМИНИЯ, СПОСОБ ПРОИЗВОДСТВА МОНОКРИСТАЛЛИЧЕСКОГО НИТРИДА АЛЮМИНИЯ И МОНОКРИСТАЛЛИЧЕСКИЙ НИТРИД АЛЮМИНИЯ

Изобретение относится к технологии получения монокристаллического нитрида алюминия, который входит в состав светоизлучающих диодов и лазерных элементов. Устройство включает тигель 9, во внутренней части которого находится исходный нитрид алюминия 11 и затравочный кристалл 12, помещенный таким образом, чтобы находиться напротив исходного нитрида алюминия, при этом тигель 9 состоит из внутреннего тигля 2 с исходным нитридом алюминия 11 и затравочным кристаллом 12 внутри себя, причем внутренний тигель является коррозионностойким к сублимационному газу исходного нитрида алюминия и содержит единый корпус из металла, имеющего ионный радиус, превышающий ионный радиус алюминия, или содержит нитрид металла; и из внешнего тигля 4, изготовленного из нитрида бора, который покрывает внутренний тигель 2. Тигель 9 может дополнительно содержать графитовый тигель 6, покрывающий внешний тигель 4. Изобретение позволяет получать нитрид алюминия высокого уровня чистоты (с концентрацией углерода не более 10 м.д.). 3 н. и 8 з.п. ф-лы, 2 ил., 1 табл., 4 пр.

2485219
выдан:
опубликован: 20.06.2013
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК ТВЕРДОГО РАСТВОРА (SiC)1-x(AlN)x

Изобретение относится к технологии получения многокомпонентных полупроводниковых материалов. Эпитаксиальные пленки твердого раствора (SiC)1-x(AlN)x, где компонента х больше нуля, но меньше единицы, получают путем осаждения твердого раствора на монокристаллическую подложку SiC-6H при температуре 1000°С магнетронным ионно-плазменным распылением, при этом распыление осуществляют в атмосфере аргона и азота из составной мишени, представляющей собой диск поликристаллического карбида кремния, заданная часть поверхности которого покрыта слоем химически чистого алюминия, причем концентрацию атомов Si, С, Al в осаждаемых пленках регулируют путем изменения площади слоя алюминия на поверхности мишени, а концентрацию азота - изменением соотношения давления азота к общему давлению в распылительной камере. Технический результат изобретения заключается в упрощении технологии получения, в улучшении совершенства получаемых пленок и возможности получения пленок широкозонного твердого раствора (SiC)1-x(AlN) x во всем интервале составов. 3 ил., 1 пр.

2482229
выдан:
опубликован: 20.05.2013
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛА AlN И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к технологии получения объемных монокристаллов и может быть использовано, преимущественно, в оптоэлектронике при изготовлении подложек для различных оптоэлектронных устройств, в том числе светодиодов, излучающих свет в ультрафиолетовом диапазоне. В способе выращивания монокристалла AlN путем газофазной эпитаксии из смеси, содержащей источник Al и NH3, включающем размещение в ростовой камере друг напротив друга источника Al и обращенной к нему ростовой поверхностью подложки, образующих ростовую зону, создание в ростовой зоне потока NH3 , нагрев источника Al и подложки до температур, обеспечивающих рост монокристалла AlN на подложке, в качестве источника Al используют только свободный Al, подложку предварительно обрабатывают Ga и/или In, после чего охлаждают источник Al до температуры 800-900°С и осуществляют отжиг подложки путем нагрева ее до температуры 1300С-1400°С с последующим ее охлаждением до температуры нитридизации ее ростовой поверхности; после охлаждения подложки до температуры нитридизации ее ростовой поверхности в ростовую зону в течение 8-15 минут подают NH3, а затем повышают температуру источника Al и вместе с NH3 подают в ростовую зону пары Al; монокристалл AlN на начальном этапе роста до достижения толщины 1-10 мкм выращивают со скоростью не более 10 мкм/час, а затем увеличивают скорость роста до 100-200 мкм/час. Устройство для осуществления данного способа включает вакуумную камеру, содержащую корпус 1, нагреватель 2 ростовой зоны, держатель 3 подложки 4, тигель 5 для размещения источника Al 6 и нагреватель 7 источника Al 6, тигель 5 для размещения источника Al 6 выполнен в виде емкости тороидальной формы, открытой со стороны ростовой зоны, установленной внутри снабженной крышкой 17 экранирующей камеры 10, размещенной в нижней части корпуса 1 и сообщающейся с источником подачи NH3, при этом в крышке 17 экранирующей камеры 10 выполнены отверстия 13 напротив центрального отверстия тигля 5 и источника Al 6. Изобретение обеспечивает снижение дефектности выращиваемого монокристалла AlN. 2 н. и 2 з.п. ф-лы, 3 ил.

2468128
выдан:
опубликован: 27.11.2012
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО SiC

Изобретение относится к технологии получения монокристаллического SiC, используемого для изготовления интегральных микросхем. Способ получения монокристаллического SiC сублимацией источника SiC на затравочный монокристалл SiC предусматривает предварительное травление поверхности затравочного монокристалла SiC в процессе подъема температуры в ростовой ячейке. Травление поверхности затравочного кристалла SiC проводят сублимированным AlN, располагая между затравочным кристаллом и источником SiC источник AlN, например, в виде порошка AlN, размещенного в кювете, закрепленной в ростовой ячейке на держателе напротив затравочного кристалла или в виде пластины со слоем AlN, закрепленной на стенке ростовой ячейки напротив затравочного кристалла. Количество размещаемого в ростовой ячейке AlN определяют из расчета М=3 nR (H2+r2), где М - количество размещаемого в ростовой ячейке A1N, г, n=0,5 2,0 - параметр статистического разброса, R - глубина нарушенного слоя затравочного кристалла, см, р=3,2 - плотность монокристалла SiC, г/см3, Н - расстояние "затравочный кристалл - источник AlN", см, r - радиус затравочного кристалла, см. Способ позволяет упростить и удешевить технологию получения монокристаллического SiC, а также увеличить срок службы ростовой ячейки. 3 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

2454491
выдан:
опубликован: 27.06.2012
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ GaN ИЛИ AlGaN

Изобретение относится к технологии получения монокристаллов нитрида галлия или нитрида алюминия-галлия. Способ включает следующие стадии: приготовление металлического расплава из чистого галлия или из смеси алюминия и галлия в плавильном тигле, выпаривание галлия или галлия и алюминия из металлического расплава, разложение предшественника азота путем термического воздействия или посредством плазмы и выращивание монокристалла GаN или АlGaN на затравочном кристалле под давлением менее чем 10 бар, при котором выпаривание галлия или галлия и алюминия проводят при температуре выше температуры выращиваемого кристалла, но по меньшей мере при 1000°С, и при котором газовый поток газа азота, газа водорода, инертного газа или сочетания этих газов пропускают над поверхностью металлического расплава таким образом, что этот газовый поток над поверхностью металлического расплава предотвращает контакт предшественника азота с металлическим расплавом, при этом либо металлический расплав приготавливают в реакторной камере в плавильном тигле, который, кроме по меньшей мере одного впуска газа-носителя и по меньшей мере одного отверстия для выпуска газа-носителя, закрыт со всех сторон, и при этом газовый поток вводят в плавильный тигель через впуск газа-носителя над металлическим расплавом и транспортируют с парами металла металлического расплава из плавильного тигля через отверстие для выпуска газа-носителя, и предшественник азота вводят в реакционную зону в реакторной камере, либо приготовление металлического расплава включает в себя размещение плавильного тигля в реакторной камере, газовый поток вводят в реакторную камеру через впуск газа-носителя над металлическим расплавом, и предшественник азота вводят в реакционную зону в реакторной камере. Изобретение обеспечивает рост кристалла при помощи реакции расплавленного галлия с реакционно-способным предшественником азота без образования корки на поверхности расплава галлия и связанных с этим проблем при росте кристалла. 2 н. и 14 з.п. ф-лы, 9 ил.

2446236
выдан:
опубликован: 27.03.2012
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ФУЛЛЕРЕНА С60 ОСОБОЙ ЧИСТОТЫ

Изобретение относится к области химической технологии, а именно к выращиванию кристаллов из парогазовой фазы. Способ включает низкотемпературную обработку порошка фуллерена С 60 в динамическом вакууме 10-4 Па при температуре 720 K в течение 3 часов, затем обработанный порошок подвергают сублимации в динамическом вакууме 10-4 Па при температуре 880 K в течение 8 часов, из сублимированного порошка выращивают первичные кристаллы фуллерена С60 в статическом вакууме 10-4 Па в запаянных кварцевых ампулах при температуре 880 K с температурным градиентом между зоной испарения и зоной роста 5 K в течение 1-5 суток, а далее из первичных кристаллов выращивают финишные кристаллы фуллерена С60 при условиях, аналогичных условиям выращивания первичных кристаллов. Изобретение позволяет получать кристаллы фуллерена С60 высокого структурного совершенства, относительно больших размеров (4-8 мм в длину, 3-4 мм в ширину при толщине 1-2 мм) и практически не содержащих примесей. 3 ил.

2442847
выдан:
опубликован: 20.02.2012
СПОСОБ ПОЛУЧЕНИЯ МИКРОКРИСТАЛЛОВ НИТРИДА АЛЮМИНИЯ

Изобретение относится к области выращивания микромонокристаллов нитрида алюминия. Микрокристаллы нитрида алюминия получают из смеси газа и паров алюминия. Нанопорошок алюминия размещают между полюсами постоянного магнита и нагревают. Процесс осуществляют в атмосфере воздуха при давлении 1 атм в условиях теплового взрыва в магнитном поле постоянного магнита напряженностью 1500 эрстед. Изобретение позволяет получать гексагональный нитрид алюминия микронного размера, который может быть использован в качестве подложек для изготовления элементов наноэлектроники. 2 ил.

2437968
выдан:
опубликован: 27.12.2011
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО SiC

Изобретение относится к микроэлектронике и касается технологии получения монокристаллического SiC - широко распространенного материала, используемого при изготовлении интегральных микросхем. Способ получения монокристаллического SiC включает сублимацию источника SiC, размещенного в тигле, на подложку из затравочного монокристалла SiC, также размещенного в тигле на графитовом держателе с использованием переходного слоя. Этот слой содержит механическую смесь порошков углерода и карбида кремния в виде любых их модификаций, с добавлением связующего или без него. Его размещают между затравочным кристаллом и держателем, а поверхности затравочного кристалла и держателя затравки обработаны адгезивом. Переходный слой может состоять из нескольких подслоев различного состава, нанесенных последовательно. При нанесении переходного слоя используют суспензию порошков карбида кремния и углерода в виде графита или сажи, при этом в качестве дисперсионной среды для получения суспензии используют изопропиловый, или виниловый, или этиловый спирт. Технический результат предлагаемого способа заключается в снижении механических напряжений в затравке и, как следствие, улучшении качества целевого продукта. 6 з.п. ф-лы, 3 ил., 1 табл.

2433213
выдан:
опубликован: 10.11.2011
ТИГЕЛЬ ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКОГО СЛИТКА КАРБИДА КРЕМНИЯ С НИТРИДОМ АЛЮМИНИЯ И ГЕТЕРОСТРУКТУР НА ИХ ОСНОВЕ

Изобретение относится к устройствам для получения твердых растворов карбида кремния с нитридом алюминия, используемых в производстве силовых, СВЧ- и оптоэлектронных приборов, работающих при высокой температуре и в агрессивных средах. Тигель включает графитовый корпус 1 с гранулированным поликристаллическим источником 7, 8, крышку 12, пьедестал 13 и подложки 11, 17. В полости графитового корпуса 1 помещен съемный графитовый контейнер 3 со сквозным цилиндрическим каналом 4 и радиальными отверстиями 5, над контейнером установлена матрица 9 с отверстиями 10 и подложками 11, а полость контейнера 3 герметизируется прокладкой 16, крышкой 12 с резьбовым отверстием и гайкой 2, причем в резьбовое отверстие крышки 12 вкручен пьедестал 13 с глухим отверстием и установленной на его поверхности подложкой 17. Для уменьшения утечки потока тепловой энергии из контейнера в окружающее пространство через крышку и дно корпуса, а также для герметизации внутренней полости тигля от утечки паров засыпки применены прокладки из графитовой фольги - графлекса. Остальные детали выполнены из высокоплотного графита, полученного методом изостатического прессования (например, из графита марки МПГ-9Н). Изобретение обеспечивает повышение производительности труда, экономию материала, более точный контроль температуры подложки, получение в одном технологическом цикле и монокристаллического слитка, и гетероструктур. 1 з.п. ф-лы, 1 ил.

2425914
выдан:
опубликован: 10.08.2011
КРИСТАЛЛ SiC ДИАМЕТРОМ 100 мм И СПОСОБ ЕГО ВЫРАЩИВАНИЯ НА ВНЕОСЕВОЙ ЗАТРАВКЕ

Изобретение относится к полупроводниковым материалам и технологии их получения и может быть использовано в электронике. Полупроводниковый кристалл карбида кремния содержит монокристаллическую затравочную часть 21 и монокристаллическую выращенную часть 22 на указанной затравочной части 21, при этом затравочная 21 и выращенная 22 части образуют по существу правильный цилиндрический монокристалл карбида кремния 20, причем границу раздела между выращенной и затравочной частью определяет затравочная грань 23, которая по существу параллельна основаниям указанного правильного цилиндрического монокристалла 20 и имеет отклонение от оси на угол примерно 0,5°-12° относительно базовой плоскости 26 монокристалла 20, а указанная монокристаллическая выращенная часть воспроизводит политип указанной монокристаллической затравочной части и имеет диаметр, по меньшей мере, примерно 100 мм. Изобретение обеспечивает получение высококачественных (с малым содержанием дефектов) монокристаллов карбида кремния большого диаметра, из которых можно получать отдельные пластины с внеосевыми поверхностями в форме круга. 3 н. и 25 з.п. ф-лы, 7 ил.

2418891
выдан:
опубликован: 20.05.2011
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО SiC

Изобретение относится к микроэлектронике и касается технологии получения монокристаллического SiC, используемого для изготовления интегральных микросхем. Способ получения монокристаллического SiC предусматривает сублимацию источника SiC 9, размещенного в тигле, на подложку из затравочного монокристалла SiC 8 при прохождении паровой фазы источника SiC 9 через барьерный уловитель углерода (БУУ). В качестве БУУ используют не менее двух перекрывающихся пластин 10, 11, выполненных из жаропрочного материала (графита, тантала или ниобия) и установленных параллельно основанию тигля из расчета h=(0,2÷0,6)·d·(1- ), где h - расстояние между перекрывающимися пластинами, мм; d - диаметр тигля, мм; - коэффициент перекрытия (отношение площади, перекрываемой смежными пластинами, к площади тигля), равный 0,5-0,8. Технический результат изобретения заключается в повышении скорости роста SiC (оптимально 1,5 мм/ч) при высоком качестве целевого продукта, характеризуемом плотностью микропор 19-25 см-2. 3 з.п. ф-лы, 1 табл., 3 ил.

2405071
выдан:
опубликован: 27.11.2010
ТИГЕЛЬ ДЛЯ ВЫРАЩИВАНИЯ ОБЪЕМНОГО МОНОКРИСТАЛЛА НИТРИДА АЛЮМИНИЯ (AlN)

Изобретение относится к устройствам для получения полупроводников и предназначено, в частности, для производства коротковолновых оптоэлектронных полупроводниковых приборов, работающих при высоких температурах в агрессивных средах. Тигель для выращивания объемного монокристалла нитрида алюминия включает графитовый контейнер 1 с крышкой 2 и затравкой 3, внутренняя поверхность контейнера 1 футерована слоем поликристаллического источника - спрессованным нитридом алюминия 4, выполненным в виде шарового сегмента, содержащего кольцевую 5 наружную 6 и внутреннюю 7 сегментные поверхности, причем центры вращения внутренней 7 и наружной 6 сегментных поверхностей О и O1 расположены друг над другом и лежат на общей оси вращения поверхностей, а кольцевая поверхность 5 совпадает с верхней плоскостью 8 графитового контейнера, при этом между наружной поверхностью поликристаллического шарового сегмента и внутренней поверхностью графитового контейнера установлена сопрягаемая с этими поверхностями прокладка 9 из тантала, а внутренняя поверхность крышки 2 снабжена сопрягаемой с ней прокладкой 10 из танталовой фольги. Форма поликристаллического источника выбрана в виде шарового сегмента по определенным соображениям. Во-первых, множество точек, составляющих внутреннюю поверхность шарового сегмента, равноудалено от поверхности затравки, что положительно сказывается на равномерности структуры выращиваемого кристалла. Во-вторых, шаровой сегмент закрывает всю внутреннюю поверхность контейнера, предотвращая смешивание частиц графита, из которого выполнен контейнер, с парами компонентов источника, а кольцевая поверхность находится на уровне верхнего среза контейнера. В-третьих, за счет расположения друг над другом внутренней и наружной поверхностей толщина стенки шарового сегмента на уровне верхнего среза контейнера меньше толщины дна шарового сегмента. Это условие необходимо для выравнивая температурного градиента и равномерного нагрева источника, учитывая, что температура на нижних слоях контейнера всегда выше, чем на верхних слоях. Расчет радиусов R1 и R внутренней и наружной поверхностей шарового сегмента и их взаимное расположение выполняется с учетом таких факторов, как температура нагревательного элемента, толщина стенок контейнера, расстояние от нагревательного элемента до стенок контейнера, толщина прокладки, и т.д. Футеровку контейнера можно производить непосредственно в контейнере путем прессования в нем материала источника или можно получить шаровой сегмент отдельно, на специальном приспособлении и установить его в контейнер, т.е сделать его съемным. Таким образом, источник после его выработки можно менять на другой, полноценный. Установка прокладки 9 из тантала препятствует проникновению графита из контейнера в пары источника. 1 з.п. ф-лы, 1 ил.

2389832
выдан:
опубликован: 20.05.2010
СПОСОБ ПОЛУЧЕНИЯ НА ПОДЛОЖКЕ КАЛЬЦИЙ-ФОСФАТНОГО ПОКРЫТИЯ

Изобретение относится к способу получения биоактивных кальций-фосфатных покрытий и может быть использовано при изготовлении ортопедических и зубных протезов. Способ получения на подложке кальций-фосфатного покрытия включает высокочастотное магнетронное распыление мишени из гидроксиапатита Са10(РO4 )6(ОН)2 в течение 15-150 мин с использованием в качестве рабочего газа аргона при его давлении в рабочей камере 0,1 Па. При этом осаждение покрытия проводят на подложку, размещенную над кольцевой областью прикатодного пространства магнетрона, где силовыми линиями магнитного поля магнетрона локализована плазма высокочастотного разряда и воздействие заряженных частиц на подложку максимально, при удельной мощности высокочастотного разряда 50 Вт·см-2, что обеспечивает формирование состава покрытия, соответствующего составу стехиометрического гидроксиапатита Са10(РO4)6(ОН) 2. При использовании способа происходит активизация кристаллизации покрытия в процессе его роста с образованием конечной фазы, соответствующей составу мишени. 6 ил.

2372101
выдан:
опубликован: 10.11.2009
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК РАСТВОРОВ (SiC) 1-x(AlN)x

Изобретение относится к области технологии получения многокомпонентных полупроводниковых материалов и может быть использовано в электронной промышленности для получения полупроводникового материала - твердого раствора (SiC)1-x(AlN)x для создания на его основе приборов твердотельной силовой и оптоэлектроники, для получения буферных слоев (SiC) 1-x(AlN)x при выращивании кристаллов нитрида алюминия (AlN) или нитрида галлия (GaN) на подложках карбида кремния (SiC). Эпитаксиальные пленки твердого раствора карбида кремния с нитридом алюминия (SiC)1-x (AlN)x, где 0<х<1, получают путем осаждения твердого раствора на монокристаллическую подложку SiC-6H при температуре 1000°С ионно-плазменным магнетронным распылением мишени из поликристаллического твердого раствора (SiC) 1-x(AlN)x, где 0<х<1, при этом распыление мишени ведут при воздействии переменного тока с частотой 13,56 МГц. Изобретение позволяет получать монокристаллические пленки высокого совершенства во всем диапазоне изменения химического состава, а также увеличить эффективность распыления высокоомных мишеней. 3 ил.

2333300
выдан:
опубликован: 10.09.2008
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКОГО НИТРИДА АЛЮМИНИЯ

Изобретение относится к выращиванию монокристаллов из паров, в частности к выращиванию монокристаллов нитрида алюминия конденсацией испаряемого или сублимируемого материала. Способ предусматривает размещение в ростовой камере друг напротив друга подложки и источника паров алюминия, нагрев и поддержание рабочих температур источника и подложки. Для очищения подложки и источника паров алюминия от летучих примесей предварительно осуществляют нагрев подложки и источника паров алюминия до температуры 1500÷1700°С при давлении не выше 10-3 мм рт.ст. Затем для подавления излишнего испарения и исключения возможности роста поликристаллов в ростовую камеру напускают азот до давления 0,9÷1 атм, после чего продолжают нагрев до рабочей температуры. Предлагаемый способ позволяет увеличить количество выхода годных кристаллов, отвечающих заданным параметрам, а также повысить качество выращиваемых кристаллов за счет очищения в процессе нагрева подложки и источника паров алюминия от летучих примесей.

2330905
выдан:
опубликован: 10.08.2008
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛИЧЕСКОГО НИТРИДА АЛЮМИНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к выращиванию кристаллов из паров, в частности к выращиванию монокристаллов нитрида алюминия конденсацией испаряемого и сублимируемого материала. Способ предусматривает размещение в ростовой камере друг напротив друга подложки и источника паров алюминия, нагрев и поддержание рабочих температур. Для выравнивания атмосферы внутри ростовой камеры нагрев и поддержание рабочих температур осуществляют в атмосфере смеси паров алюминия и азота с внешней стороны ростовой камеры. Для этого устройство для выращивания монокристаллического нитрида алюминия дополнительно содержит наружный тигель с крышкой для размещения в нем ростовой камеры, в который помещен источник паров алюминия. Применение предлагаемых способа и устройства для выращивания монокристаллического нитрида алюминия позволяет увеличить количество годных кристаллов нитрида алюминия и повысить их качество. 2 н.п. ф-лы, 1 ил.

2330904
выдан:
опубликован: 10.08.2008
ПЕЧЬ ДЛЯ ЭПИТАКСИИ КАРБИДА КРЕМНИЯ

Изобретение относится к электротермическому оборудованию и предназначено, в частности, для производства монокристаллов карбида кремния эпитаксией из газовой фазы. Печь для эпитаксии карбида кремния включает водоохлаждаемый корпус с крышкой, нагреватели, тепловые экраны, кристаллизатор со съемной крышкой, смотровое окно, патрубок для вакуумирования, систему водоохлаждения, электропитания и контрольно-измерительную аппаратуру. Корпус печи снабжен люком для загрузки кристаллизаторов, а в полости печи установлена карусель, на которой по окружности размещены ячейки для кристаллизаторов, причем ось карусели соединена с механизмом ее вращения, а кристаллизаторы установлены с возможностью их подачи к съемной крышке, установленной в нагревателе, при помощи механизма подъема. Конструкция печи позволяет выращивать крупноразмерные монокристаллы SiC высокого качества в непрерывном режиме с высокой скоростью роста и в стабильных температурных условиях. 4 ил.

2330128
выдан:
опубликован: 27.07.2008
ОТЖИГ МОНОКРИСТАЛЛИЧЕСКИХ АЛМАЗОВ, ПОЛУЧЕННЫХ ХИМИЧЕСКИМ ОСАЖДЕНИЕМ ИЗ ГАЗОВОЙ ФАЗЫ

Изобретение относится к отжигу алмаза, а именно к отжигу монокристаллического CVD-алмаза. Способ включает увеличение температуры CVD-алмаза до температуры отжига, составляющей по меньшей мере 1500°С при давлении по меньшей мере 4,0 ГПа в пределах стабильной фазы графита или только в пределах стабильной фазы алмаза. В частных случаях выполнения изобретения после достижения CVD-алмазом температуры отжига проводят понижение температуры монокристаллического CVD-алмаза до температуры окружающей среды при сохранении давления на монокристаллическом CVD-алмазе. Перед отжигом может быть проведена первоначальная стадия выращивания монокристаллического коричневого алмаза при температуре примерно 1400-1460°С в атмосфере, содержащей 4-5% N2/CH4. Получают осветленный или бесцветный монокристаллический алмаз с улучшенными оптическими свойствами, в котором устранены дефекты. 8 з.п. ф-лы.

2324764
выдан:
опубликован: 20.05.2008
ТИГЕЛЬ ДЛЯ ЭПИТАКСИИ КАРБИДА КРЕМНИЯ

Изобретение относится к материалам электронной техники, в частности к технологии производства монокристаллов карбида кремния эпитаксией из газовой фазы. Тигель содержит корпус и крышку с пьедесталом, при этом крышка снабжена концентрическими пазами, в которые вставляются теплопередающие элементы, которые увеличивают температуру части поверхности крышки, на которой растут поликристаллы, что замедляет их рост. В результате выращиваемый монокристаллический SiC начинает расти одновременно и в направлении 90 градусов к грани (0001), используя при этом поверхность поликристаллов как продолжение пьедестала. Учитывая, что скорость роста SiC в направлении 90 градусов к грани SiC подложки гораздо выше скорости роста в направлении (0001), то за несколько циклов монокристалл увеличивается в диаметре, занимая всю поверхность крышки, и продолжает расти по высоте, несмотря на наличие вокруг него паразитных поликристаллических сростков. 2 ил.

2324019
выдан:
опубликован: 10.05.2008
СПОСОБ ВЫРАЩИВАНИЯ ТОНКОЙ МОНОКРИСТАЛЛИЧЕСКОЙ ПЛЕНКИ, СВЕТОИЗЛУЧАЮЩЕЕ УСТРОЙСТВО НА ОСНОВЕ Ga2O 3 И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к технологии производства тонких оксидных монокристаллических пленок и может быть использовано в оптике. Сущность изобретения: тонкую монокристаллическую пленку -Ga2O3 формируют путем выращивания из газовой фазы на подложке, изготовленной из монокристалла -Ga2O3. Лазерный луч направляют на мишень для возбуждения атомов, составляющих мишень. Атомы Ga высвобождаются из мишени в результате термического и фотохимического воздействия. Свободные атомы Ga связываются с радикалами одного или более газов в атмосфере камеры с образованием тонкой пленки -Ga2O3 на подложке. Описано также светоизлучающее устройство, включающее подложку n-типа, изготовленную легированием монокристалла -Ga2O3 донорами, слой p-типа, изготовленный легированием монокристалла -Ga2O3 акцептором, и представленное в виде перехода на верхней поверхности подложки n-типа. Изобретение позволяет получать тонкие монокристаллические пленки -Ga2O3 и GaN, а также монокристаллы ZnO высокого качества, светоизлучающее устройство способно излучать свет в ультрафиолетовой области. 7 н. и 17 з.п. ф-лы, 27 ил.

(56) (продолжение):

CLASS="b560m"reactive atmosphere. Applied Surface Science, 106, 1996, p.149-153. JP 2001286814 A, 16.10.2001. WO 02089223 A1, 07.11.2002.

2313623
выдан:
опубликован: 27.12.2007
БУЛЯ НИТРИДА ЭЛЕМЕНТА III-V ГРУПП ДЛЯ ПОДЛОЖЕК И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ

Изобретение может быть использовано в полупроводниковой технологии для получения були нитрида элемента III-V групп для создания микроэлектронных устройств на подложках, изготовленных из такой були. Сущность изобретения: булю нитрида элемента III-V группы можно получить путем выращивания материала нитрида элемента III-V группы на соответствующем кристалле-затравке из такого же материала нитрида элемента III-V группы путем эпитаксии из паровой фазы при скорости роста выше 20 микрометров в час. Буля имеет качество, пригодное для изготовления микроэлектроронных устройств, ее диаметр составляет более 1 сантиметра, длина более 1 миллиметра и плотность дефектов на верхней поверхности менее 107 дефектов·см -2. 9 н. и 96 з.п. ф-лы, 9 ил.

2272090
выдан:
опубликован: 20.03.2006
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЕВ ТВЕРДЫХ РАСТВОРОВ SiC-AlN

Изобретение относится к области технологии получения полупроводниковых тонких пленок многокомпонентных твердых растворов. Сущность изобретения: Способ получения эпитаксиальных слоев твердого раствора карбида кремния с нитридом алюминия SiC-AlN, включает осаждение твердого раствора на монокристаллическую подложку SiC-6Н при температуре 1000°С магнетронным ионно-плазменным распылением, осуществляемым из одной мишени поликристаллического твердого раствора SiC-AlN, изготовленной путем горячего прессования смеси порошков SiC и AlN. Технический результат изобретения заключается в упрощении технологии получения слоев, в улучшении их однородности и уменьшении энергетических затрат. 3 ил.

2260636
выдан:
опубликован: 20.09.2005
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОЧАСТИЦ ИЛИ НИТЕВИДНЫХ НАНОКРИСТАЛЛОВ, СПОСОБ ИЗГОТОВЛЕНИЯ НЕОРГАНИЧЕСКИХ ФУЛЛЕРЕНОПОДОБНЫХ СТРУКТУР ХАЛЬКОГЕНИДА МЕТАЛЛА, НЕОРГАНИЧЕСКИЕ ФУЛЛЕРЕНОПОДОБНЫЕ СТРУКТУРЫ ХАЛЬКОГЕНИДА МЕТАЛЛА, СТАБИЛЬНАЯ СУСПЕНЗИЯ IF-СТРУКТУР ХАЛЬКОГЕНИДА МЕТАЛЛА, СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ПЛЕНОК ИЗ IF-СТРУКТУР ХАЛЬКОГЕНИДА МЕТАЛЛА И ТОНКАЯ ПЛЕНКА, ПОЛУЧЕННАЯ ТАКИМ СПОСОБОМ, И НАСАДКА ДЛЯ РАСТРОВОГО МИКРОСКОПА

Изобретение может быть использовано для получения светочувствительных элементов в солнечных батареях, при производстве инертных насадок для микроскопов SPM, аккумуляторных батарей и т.д. Сущность изобретения: предлагается способ приготовления наночастиц металлических оксидов, содержащих введенные частицы металла, относящийся также к получаемым из данных оксидов неорганическим фуллереноподобным (IF) структурам халькогенидов металла с интеркалированным и/или заключенным внутри металлом, который включает нагрев материала из металла I с водяным паром или выпаривание электронным лучом упомянутого материала из металла I с водой или другим подходящим растворителем, в присутствии соли металла II; сбор оксида металла I с присадкой металла II или продолжение процесса путем последующего сульфидирования, дающего достаточные количества IF-структур халькогенида металла I с интеркалированным и/или заключенным внутри металлом II. Соль металла II представляет собой предпочтительно соль щелочного, щелочноземельного или переходного металла и более предпочтительно хлорид щелочного металла. Интеркалированные и/или служащие оболочкой IF-структуры могут использоваться в качестве смазок. Они также образуют стабильные суспензии, например в спирте, а электрофоретическое осаждение из упомянутых суспензий позволяет получить тонкие пленки из интеркалированных IF-материалов, которые имеют широкий диапазон возможных применений. 7 н. и 14 з.п. ф-лы, 9 ил.
2194807
выдан:
опубликован: 20.12.2002
СПОСОБ ПОЛУЧЕНИЯ ТРУБЧАТОГО КРИСТАЛЛА КАРБИДА КРЕМНИЯ

Изобретение относится к технологии электронного приборостроения, а именно к способам размерного профилирования кристаллов карбида кремния, и может быть использовано в микросистемной технике, оптоэлектронике и т.п. Сущность изобретения: предложен способ получения трубчатого кристалла карбида кремния, включающий сублимацию карбида кремния вдоль профилирующего стержня в ростовую полость, перекрытую затравочным монокристаллом, причем на начальной стадии процесса сублимацию осуществляют в полость, образованную стенкой ростовой полости и поверхностью конического наконечника профилирующего стержня, способного совершать движение относительно монокристаллической затравки, в том числе в условиях электрического поля. Техническим результатом предлагаемого изобретения является возможность получения: трубчатых монокристаллов с низкой плотностью дислокаций (ND<10 см-2); трубчатых монокристаллов с любой формой поперечного сечения внутренней полости; трубчатых монокристаллов с эксцентричной полостью; затравки трубчатой формы; трубчатых монокристаллов с внутренней винтовой нарезкой; трубчатых гетерополитипных структур, в частности политипа 4Н на затравочном кристалле 6Н-SiC. 2 з.п. ф-лы, 2 ил.
2182607
выдан:
опубликован: 20.05.2002
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ МНОГОСЛОЙНЫХ СТРУКТУР

Устройство для формирования многослойных структур относится к области технологии полупроводниковых материалов и приборов, а более конкретно к устройствам для нанесения тонких пленок полупроводниковых соединений и твердых растворов на их основе. Технической задачей, решаемой данным изобретением, является создание конструкции контейнера, обеспечивающего увеличение производительности и дающего возможность создавать чередующиеся слои разного состава. Устройство для формирования многослойных структур состоит из основной кварцевой ампулы и двух дополнительных ампул, с помощью которых осуществляется выращивание легированных пленок из газовой фазы с использованием двух дополнительных источников пара, один с собственным компонентом, другой с легирующей примесью. Предлагаемое устройство от прототипа отличается тем, что оно содержит изолированные друг от друга камеры с отверстиями, расположенные с возможностью размещения между ними нагревателя, а в основной камере с возможностью размещения в ней подложек выполнена внутренняя полость с отверстием. Технический результат - заявляемая совокупность элементов достаточна для поочередного поступления пара разного состава в зону кристаллизации и достижения поставленной цели. 2 ил.
2175692
выдан:
опубликован: 10.11.2001
Наверх