<

Электролитические способы получения неорганических соединений или неметаллов – C25B 1/00

Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C25 Электролитические способы; электрофорез; устройства для них
C25B Получение соединений или неметаллов электролитическими способами или способом электрофореза; устройства для них
C25B 1/00 Электролитические способы получения неорганических соединений или неметаллов
C25B 1/02 .водорода или кислорода
C25B 1/04 ..электролизом воды
C25B 1/06 ...в электролизерах с плоскими или пластиноподобными электродами
C25B 1/08 ....типа фильтрпресса
C25B 1/10 ...в электролизерах с диафрагмой
C25B 1/12 ...в электролизерах под давлением
C25B 1/13 .озона
C25B 1/14 .соединений щелочных металлов
C25B 1/16 ..гидроксиды
C25B 1/18 .соединений щелочноземельных металлов или соединений магния
C25B 1/20 ..гидроксиды
C25B 1/21 .оксидов марганца
C25B 1/22 .неорганических кислот
C25B 1/24 .галогенов или их соединений
C25B 1/26 ..хлор; его соединения
C25B 1/28 .пероксидных соединений
C25B 1/30 ..пероксиды
C25B 1/32 ..пербораты
C25B 1/34 .одновременное получение гидроксидов щелочных металлов и хлора, его кислородных кислот или солей
C25B 1/36 ..в электролизерах с ртутным катодом
C25B 1/38 ...вертикальным ртутным катодом
C25B 1/40 ...горизонтальным ртутным катодом
C25B 1/42 ...разложение амальгам
C25B 1/44 ....с помощью катализаторов
C25B 1/46 ..в электролизерах с диафрагмой

Патенты в данной категории

СПОСОБ ПОЛУЧЕНИЯ ЙОДИРУЮЩЕГО АГЕНТА

Изобретение относится к способу, включающему в себя следующие стадии: a) электрохимическое окисление 1 моля исходного ICl в кислотном водном растворе с образованием промежуточного производного со степенью окисления йода, равной (III); b) реагирование упомянутого промежуточного производного с йодом и c) получение 3 молей ICl. Использование настоящего способа позволяет избежать отрицательных факторов, связанных с применением больших объемов хлора. 19 з.п. ф-лы, 7 пр., 3 ил.

2528402
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СРЕДСТВА ДЛЯ ОЧИСТКИ ВОДЫ

Изобретение относится к способу получения жидкого средства для очистки воды. Способ включает электролиз водного раствора хлорида натрия в электролизере с неразделенными катодным и анодным пространствами и характеризуется тем, что электролиз осуществляют с использованием анода, изготовленного из алюминия или из сплавов алюминия. Использование предлагаемого способа позволяет расширить функциональные возможности получаемого средства. 1 з.п. ф-лы, 2 пр.

2528381
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % K 2WO4, 25 мол. % Li2WO4 и 45 мол. % WO3, с использованием платинового анода, при этом электроосаждение ведут на катоде из угольного материала с высокой удельной поверхностью, перед подачей на электрод импульса перенапряжения катод пропитывают расплавом в течение времени, достаточного для пропитки, но недостаточного для активного выгорания углерода из угольного катода. Использование настоящего способа позволяет получить нановискерные структуры вольфрамовых бронз на угольном материале, которые могут использоваться как катализаторы с высокой активностью, обладающие технологическими свойствами для процессов органического и нефтехимического синтеза. 3 пр., 1 табл., 6 ил.

2525543
выдан:
опубликован: 20.08.2014
БОРТОВАЯ ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения. Последняя содержит циркуляционный насос, кислородный и водородный контуры циркуляции воды. Каждый из контуров включает в себя соответствующую полость электролизера и газоотделитель в виде центробежного сепаратора. Сепараторы соединены с общим электроприводом постоянного тока циркуляционного насоса. Этот электропривод подключен к системе электропитания КА последовательно с электролизером. Кислородный контур снабжен входной водяной магистралью с клапаном и в нем установлен теплообменник, подключенный к системе терморегулирования КА. Техническим результатом изобретения является стабилизация режима работы электролизера и повышение надежности бортовой электролизной установки. 1 ил.

2525350
выдан:
опубликован: 10.08.2014
СПОСОБ ПОЛУЧЕНИЯ МАГНЕТИТА

Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза. Процесс проводят в трехэлектродном двуханодном элетролизере, в который заливают 1M раствор гидроксида натрия и подключают ток. Напряжение составляет 10 B, катодная плотность тока на катоде из титана 0,2 A/см2, анодная плотность тока на аноде из Ст3 0,3 A/см2, а на диоксидсвинцовом аноде на титановой основе - 0,1 А/см2. При этом происходит одновременное растворение анода из Ст3 и выделение кислорода на диоксидсвинцовом аноде на титановой основе. Изобретение позволяет получить магнетит без подачи воздуха для окисления железа, повысить чистоту продукта. 1 пр.

2524609
выдан:
опубликован: 27.07.2014
СПОСОБ ЭЛЕКТРОЛИЗА ВОДНЫХ РАСТВОРОВ ХЛОРИСТОГО ВОДОРОДА ИЛИ ХЛОРИДА ЩЕЛОЧНОГО МЕТАЛЛА В ЭЛЕКТРОЛИЗЕРЕ И УСТАНОВКА ДЛЯ РЕАЛИЗАЦИИ ДАННОГО СПОСОБА

Заявленное изобретение относится к способу электролиза водных растворов хлористого водорода или хлорида щелочного металла. В процессе электролиза хлорида щелочного металла предложено использование катода, потребляющего кислород, для чего процесс протекает при высоком избытке кислорода. Необходимый для электролиза кислород обеспечивается устройством для разделения газов, например вакуумно-напорным циклическим безнагревным адсорбционным устройством (VPSA) или воздухоразделительным устройством. Согласно предложенному изобретению обогащенная кислородом газовая среда, образовывающаяся в результате указанного процесса, снова направляется в устройство для разделения газов как питающий газ. Таким образом, устройство для разделения газов работает с питающим газом, обогащенным кислородом, который, в свою очередь, направляется к катоду, где происходит расходование кислорода. Повышение экономичности процесса является техническим результатом заявленного изобретения.2 н. и 2 з.п. ф-лы, 1 ил., 1 пр.

2521971
выдан:
опубликован: 10.07.2014
СПОСОБЫ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ И ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ, УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ПЕРВОГО СПОСОБА (ВОДОРОДНАЯ ЯЧЕЙКА)

Изобретение относится к водородной энергетике. Технический результат состоит в получении водорода разложением воды с увеличением частоты периодического воздействия напряженностей электрических полей на воду. Способ получения водорода из воды включает разложение воды под действием двух электромагнитных резонансных полей, вектора напряженностей электрических полей которых поочередно меняют направление на 180 градусов при постоянно направленной перпендикулярно им суммарной напряженности магнитных полей от индуктивности контуров. Водородная ячейка содержит два колебательных контура, конденсаторные пластины (13, 14) которых перфорированы таким образом, что пластины первого конденсатора (13) взаимодействуют через отверстия в пластине второго конденсатора (14) и, наоборот, пластины второго конденсатора (14) взаимодействуют через отверстия в пластине (13) первого. Индуктивности (11, 12), имеющие противоположную намотку, расположены между обкладками конденсаторов. 2 н.п. ф-лы, 4 ил.

2521868
выдан:
опубликован: 10.07.2014
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ

Изобретение относится к области химии. Реактор 1 для получения водорода содержит корпус 2, патрубок 10 для подачи воды, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления. Внутри реактора 1 расположен контейнер 6 с металлом 9, который установлен на изоляторах 8. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который присоединен к высокочастотному источнику питания 17. При подаче потенциала от высоковольтного вывода 13 трансформатора Тесла 14 на металл 9 на поверхности металла возникают плазменные высокочастотные разряды, которые разрушают пленку окислов на поверхности металла, и происходит реакция водного окисления металлосодержащего вещества с водой с выделением водорода. Изобретение позволяет снизить энергозатраты. 2 н. и 4 з.п. ф-лы, 1 ил.

2520490
выдан:
опубликован: 27.06.2014
СПОСОБ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ХИМИЧЕСКУЮ И АККУМУЛИРОВАНИЕ ЕЕ В ВОДОРОДСОДЕРЖАЩИХ ПРОДУКТАХ

Изобретение может быть использовано в химической промышленности, в системах производства топлива для транспорта и в стационарных энергоустановках. Способ преобразования солнечной энергии в химическую и аккумулирования ее в водородсодержащих продуктах включает производство биомассы с использованием солнечной энергии, которую подвергают реакции парокислородной каталитической конверсии с получением продуктов реакции, содержащих водород и диоксид углерода. Полученные продукты направляют в высокотемпературный электрохимический процесс для получения синтез-газа и кислорода. Из полученного синтез-газа на катализаторе в процессе Фишера-Тропша получают углеводороды, а кислород возвращают в начало процесса на конверсию. В качестве рабочего тела используют воду, которую при нагреве синтез-газом испаряют при давлении в диапазоне от 0,1 до 7,0 МПа и направляют на турбину для выработки механической и/или электроэнергии и теплоносителя. Изобретение позволяет снизить тепловые затраты на процесс получения энергоносителей и эффективно производить энергоносители при отсутствии кислорода из атмосферы. 12 з.п. ф-лы, 1 ил., 3 табл.

2520475
выдан:
опубликован: 27.06.2014
АКТИВАЦИЯ КАТОДА

Изобретение относится к способу активации катода в электролитической ячейке для получения хлората щелочного металла. Способ включает стадию, в которой проводят электролиз электролита, содержащего хлорид щелочного металла, в электролитической ячейке, в которой размещены по меньшей мере один анод и по меньшей мере один катод. При этом a) указанный электролит содержит хром в любой форме в количестве, варьирующем от приблизительно 0,01·10 -6 до приблизительно 100·10-6 моль/дм 3; b) указанный электролит содержит молибден, вольфрам, ванадий, марганец и/или их смеси в любой форме в совокупном количестве, варьирующем от приблизительно 0,1·10-6 до приблизительно 0,1·10-3 моль/дм3. Также изобретение относится к способу получения хлората щелочного металла. Использование настоящего способа позволяет снизить напряжение на клеммах ячейки. 2 н. и 11 з.п. ф-лы, 5 пр., 6 табл.

2518899
выдан:
опубликован: 10.06.2014
МАТЕРИАЛ ЭЛЕКТРОДА НА ОСНОВЕ ЖЕЛЕЗА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ ВОДОРОДА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к способу изготовления материала электрода для электрохимического получения водорода, который заключается в том, что на поверхность электрода наносят порошкообразную композицию Fe-C и осуществляют синтез нанокристаллических элементов Fe-C со средним размером в пределах 10-15 нм обработкой лазерными импульсами с длиной волны 1-1,5 мкм при плотности излучения 10 7-109 Вт/см2, скорости сканирования лазером 8-15 см/с, частоте импульсов 33-60 кГц в вакууме или в среде аргона, не доводя при этом процесс до плавления и появления карбида железа Fe3C. Изобретение также относится к материалу электрода на основе железа в качестве катодного материала для электрохимического получения водорода. Технический результат заключается в модификации поверхности железа, позволяющей повысить электрокаталитическую активность такого материала. 2 н.п.ф-лы, 2 табл.

2518466
выдан:
опубликован: 10.06.2014
РЕГЕНЕРАТИВНАЯ ЭЛЕКТРОХИМИЧЕСКАЯ СИСТЕМА ЭНЕРГОСНАБЖЕНИЯ ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО АППАРАТА С ЗАМКНУТЫМ ПО ВОДЕ РАБОЧИМ ЦИКЛОМ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ

Изобретение относится к энергетике, к системе энергоснабжения космических аппаратов и напланетных станций. Электрохимическая система энергоснабжения космического аппарата с замкнутым по воде рабочим циклом включает электролизер воды и кислородо-водородный генератор, гидравлически связанные друг с другом через резервуар сбора воды и пневматически сообщающиеся с баллонами хранения водорода и кислорода, последний из которых соединен с системой обеспечения жизнедеятельности космического аппарата пневмомагистралью с запорным элементом, металло-водородный аккумулятор, имеющий штуцер для водорода, через который он соединен с баллоном хранения водорода пневмомагистралью с запорным элементом. Способ эксплуатации указанной системы включает осуществление замкнутого цикла реакций разложения воды током на водород и кислород, стехиометрическое соединение этих газов с получением электричества и воды с отбором из этого цикла кислорода, избыток водорода используют в качестве реагента в металло-водородном аккумуляторе, который предварительно заряжают, удаляя из него образующийся при этом водород. Технический результат - сохранение энергоемкости утилизация избыточного водорода, повышение безопасности системы. 2 н.п. ф-лы, 1 ил.

2516534
выдан:
опубликован: 20.05.2014
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЭЛЕМЕНТНОЙ СЕРЫ ИЗ СЕРОВОДОРОДА В ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ

Изобретение относится к области органической химии, в частности, к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей, и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности. Способ получения элементной серы из сероводорода включает проведение электролиза сероводорода на платиновом аноде в органическом растворителе в присутствии фонового электролита при температуре 20-25°С и атмосферном давлении. Предварительно перед проведением электролиза сероводорода в органический растворитель вносят триэтиламин. Технический результат - усовершенствование процесса получения элементной серы, позволяющее значительно снизить значение анодного перенапряжения при проведении электросинтеза серы на основе сероводорода. Конверсия сероводорода в элементную серу - 95-98%. 1 прим.

2516480
выдан:
опубликован: 20.05.2014
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПРОДУКТОВ АНОДНОГО ОКИСЛЕНИЯ РАСТВОРОВ ХЛОРИДОВ ЩЕЛОЧНЫХ ИЛИ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Изобретение относится к устройствам для электрохимической обработки водных растворов. Установка содержит электрохимический реактор, выполненный из проточных электрохимических снабженных корпусом модульных ячеек, каждая из которых содержит один или несколько вертикальных катодов и три или более анода. Коаксиально каждому катоду установлена диафрагма, аноды установлены в корпусе между наружными поверхностями диафрагм и внутренними стенками корпуса, при этом в плоскость поперечного сечения корпуса условно вписан один правильный многоугольник с числом вершин 3-12, или в плоскость поперечного сечения корпуса условно вписаны несколько плотноупакованных правильных многоугольников, каждый из которых является или равносторонним треугольником, или квадратом, или шестиугольником, при этом коаксиально размещенные катоды и диафрагмы установлены в центре многоугольника или многоугольников, а аноды - в вершинах многоугольника или многоугольников. Каждая ячейка реактора снабжена катодным циркуляционным контуром с емкостью в виде теплообменника. Технический результат - упрощение установки большой производительности, снижение расхода энергии, увеличение выхода целевых продуктов - смеси оксидантов при одновременном повышении надежности. 13 з.п. ф-лы, 4 ил., 2 пр.

2516150
выдан:
опубликован: 20.05.2014
УСТРОЙСТВО И СПОСОБ ДЛЯ ПОЛУЧЕНИЯ ГАЗОВОГО ВОДОРОДНО-КИСЛОРОДНОГО ТОПЛИВА ИЗ ВОДЫ (ВАРИАНТЫ)

Изобретение относится к устройству получения газового водородно-кислородного топлива из воды методом электролиза, содержащем электролизер с двумя электродами и источник питания, электроды выполнены в виде двух, внешнего и внутреннего цилиндров с общей осью симметрии, внешний цилиндр совмещен с рубашкой водяного охлаждения электролизера и заземлен, а внутренний цилиндр выполнен в виде стакана с боковыми стенками и сплошным дном, закреплен на изоляторе внутри корпуса электролизера и имеет входное отверстие, совмещенное с отверстием в корпусе электролизера для подвода дистиллированной воды, выходной патрубок электролизера расположен осесимметрично относительно цилиндрических электродов за сплошным дном внутреннего цилиндрического электрода и снабжен рубашкой водяного охлаждения, а высокочастотный источник питания соединен через первый высокочастотный конденсатор с резонансным высокочастотным трансформатором Тесла с выходным напряжением 1-500 кВ, частотой 0,5-100 кГц, высоковольтный вывод которого через высоковольтный диод соединен с внутренним цилиндрическим электродом и с одной обкладкой второго высокочастотного конденсатора, другая обкладка конденсатора соединена с внешним цилиндрическим электродом. В способе получения газового водородно-кислородного топлива электролизом воды при подаче электрической энергии от источника питания на электроды внутри реактора электролиза на электроды подают от высокочастотного источника питания через высоковольтный резонансный высокочастотный трансформатор Тесла и высоковольтный диод электростатические пакеты высоковольтных высокочастотных импульсов одной полярности с выходным напряжением 1-500 кВ, частотой 0,5-100 кГц, амплитуда которых постоянно возрастает для постепенного ослабления межмолекулярных связей водорода с группой ОН и кислородом в дистиллированной воде, а при появлении ионного тока между электродами амплитуду высоковольтных высоко-частотных импульсов уменьшают до прекращения ионного тока между электродами и процесс увеличения амплитуды высоковольтных высокочистотных импульсов повторяют, а скважность подачи пакета высоковольтных импульсов выбирают из условия ограничения и блокирования ионного тока между электродами электролизера. В варианте способа получения газового водородно-кислородного топлива электролизом воды при подаче электрической энергии от источника питания на электроды внутри реактора электролиза высокочастотный источник питания соединяют с резонансным высокочастотным трансформатором Тесла с выходным напряжением 1-500 кВ, частотой 0,5-100 кГц, высоковольтный вывод трансформатора Тесла соединяют через высокочастотный высоковольтный диод с высокочастотным электрическим конденсатором и с изолированным электродом электролизера, электролизер и второй электрод заземляют и подбирают путем регулирования частоты, напряжения и величины электрической емкости конденсатора скважность пакетов высоковольтных импульсов через дистиллированную воду и электроды реактора электролиза и блокируют появление и увеличение ионного тока между электродами электролизера. Технический результат заключается в создании устройства, позволяющего получать газовое топливо из воды в виде водородно-кислородной смеси при затратах энергии менее 0,13 кВт ч на 1 м3 газового топлива. 6 н. и 3 з.п. ф-лы, 4 ил., 2 пр.

2515884
выдан:
опубликован: 20.05.2014
СПОСОБ РЕГЕНЕРАЦИИ ИОНООБМЕННОЙ МЕМБРАНЫ

Изобретение относится к электрохимическим производствам, в частности к технологии получения хлора и гидроокисей щелочных металлов электролизом раствора хлорида щелочного металла в электролизере с синтетической ионообменной мембраной. Регенерацию ионообменной мембраны, применяемой для получения хлора и гидроокисей щелочных металлов, осуществляют путем подачи в электродные камеры электролизера раствора, состоящего из лимонной кислоты 0,5-20% масс., триэтилсилилметакриловой кислоты 0,1-1,5% масс., этилового спирта 20-60% масс. и воды 18,5-79,4% масс. с температурой раствора 20-90°C при поддержании напряжения на электролизере 1,3-2,4 В без извлечения мембраны из электролизера. Технический результат - увеличение срока службы мембраны без дополнительных затрат на ее извлечение и регенерацию. 1 табл., 2 пр.

2515453
выдан:
опубликован: 10.05.2014
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО ПЕРРЕНАТА АММОНИЯ

Изобретение относится к способу получения чистого перрената аммония, а также к высокочистому перренату аммония. Способ получения чистого перрената аммония путем электролиза включает получение водной суспензии, содержащей технический перренат аммония, добавление азотной кислоты, введение полученной суспензии в катодное пространство электролитической ячейки, приложение напряжения, катодное восстановление азотной кислоты до азотистой кислоты, взаимодействие азотистой кислоты с аммониевыми ионами перрената аммония с образованием водной рениевой кислоты, удаление ионов калия из водной рениевой кислоты и отделение чистого перрената аммония от рениевой кислоты добавлением аммиака. Перренат аммония представляет собой кристаллический агломерат с размером больше 10 мкм, содержащий менее 5 ч/млн калия. Также предложено применение перрената аммония в качестве предшествующего вещества для получения рениевых соединений и/или металлического рения для применения в суперсплавах или для нанесения покрытий на рентгеновские вращающиеся аноды. Изобретение обеспечивает эффективный и экологичный способ получения чистого перрената аммония. 3 н. и 14 з.п. ф-лы, 3 ил., 1 табл., 6 пр.

2514941
выдан:
опубликован: 10.05.2014
ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ РАСТВОРА ГИПОХЛОРИТА НАТРИЯ

Изобретение относится к очистке воды, а именно к устройствам для обеззараживания питьевых и сточных вод, бассейнов и прочих водных объектов, использующих водные растворы хлора и других хлорсодержащих соединений, в частности гипохлорита натрия, и может быть использовано в технологиях водоподготовки. Электролизер смонтирован в корпусе 1, в верхней части которого имеются выходной патрубок 3, а в нижней входной патрубок 2. Спиралевидный анод 4 выполнен из титановой проволоки с металлооксидным покрытием, а катод 5 из электропроводящего стержня и расположен коаксиально и равноудалено относительно анода 4. Рабочая площадь анода в два раза и более превышает рабочую площадь катода. Технический результат заключается в том, чтобы обеспечить непрерывную работу электролизера с минимальным ремонтно-профилактическим обслуживанием. 1 ил.

2514194
выдан:
опубликован: 27.04.2014
МАТЕРИАЛ КАТОДА НА ОСНОВЕ НАНОКРИСТАЛЛИЧЕСКОГО ЦЕМЕНТИТА, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ, КАТОД ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДНЫХ ЩЕЛОЧНЫХ И КИСЛОТНЫХ РАСТВОРОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Группа изобретений относится к изготовлению электродов для электролитического получения водорода из водных щелочных и кислотных растворов. Способ получения нанокристаллического композиционного материала катода включает проведение механоактивации смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошковой смеси из наноразмерных зерен цементита Fe3C и -Fe при их соотношении в мас.%: (90÷95):(10÷5). Способ изготовления катода включает предварительную выдержку упомянутого нанокристаллического композиционного материала в вакууме 5÷10 Па в течение 1÷2 ч при температуре 450÷550°С, после чего проводят его магнитно-импульсное прессование при амплитуде 1÷2 ГПа и длительности импульсов давления 300÷400 мкс. Обеспечивается изготовление катода с пониженным перенапряжением реакции электрохимического выделения водорода. 4 н. и 1 з.п. ф-лы, 1 пр., 5 ил.

2511546
выдан:
опубликован: 10.04.2014
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ДИСПРОЗИЯ

Изобретение относится к электролитическим способам получения чистого гексаборида диспрозия. В качестве источника диспрозия используют безводный трихлорид диспрозия, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлоридов калия и натрия. Электролиз ведут в потенциостатическом режиме при температуре 700±10°С, плотностях тока от 0,1 до 1,0 А/см2 и потенциалах электролиза от 2,5 до 2,8 В относительно стеклоуглеродного квазистационарного электрода сравнения. Техническим результатом является получение чистого ультрадисперсного порошка гексаборида диспрозия, повышение скорости синтеза целевого продукта из расплавленного электролита и снижение энергозатрат. 2 пр.

2510630
выдан:
опубликован: 10.04.2014
СПОСОБ ПРОИЗВОДСТВА ХЛОРА, КАУСТИЧЕСКОЙ СОДЫ И ВОДОРОДА

Изобретение относится к способу производства хлора, гидроксида щелочного металла и водорода и устройству с компьютерным управлением для осуществления заявленного способа, при этом способ включает следующие стадии: (а) приготовление рассола путем растворения источника хлорида щелочного металла в воде; (b) удаление из рассола, полученного на стадии (а), щелочного осадка в присутствии пероксида водорода или в присутствии, самое большее, 5 мг/л активного хлора посредством фильтра из активированного угля и получение готового рассола; (с) обработка, по меньшей мере, части готового рассола, полученного на стадии (b), на стадии ионообмена; (d) обработка, по меньшей мере, части рассола, полученного на стадии (с), на стадии электролиза; (е) выделение, по меньшей мере, части хлора, гидроксида щелочного металла, водорода и рассола, полученных на стадии (d); (f) обработка, по меньшей мере, части рассола, полученного на стадии (е), на стадии обесхлоривания, осуществляемой в присутствии пероксида водорода; и (g) рециркулирование, по меньшей мере, части обесхлоренного рассола, полученного на стадии (f), на стадию (а). Технический результат заключается в обеспечении экономически целесообразного способа производства хлора, автоматизированного до такой степени, что оно пригодно для дистанционного управления и требует минимального непосредственного внимания и поддержки. 2 н. и 9 з.п. ф-лы, 1 ил.

2509829
выдан:
опубликован: 20.03.2014
СИСТЕМА И СПОСОБ ПРОИЗВОДСТВА ХИМИЧЕСКОЙ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ

Настоящее изобретение относится к системе и способу производства химической потенциальной энергии и может быть использовано в производстве эффективного топлива, которое можно было бы использовать в чистых энергетических процессах, при которых не образуются и не выделяются парниковые газы и другие загрязнители окружающей среды. Система диссоциации газов включает сепаратор газовых компонентов, источник электронов, выполненный с возможностью испускания электронов, генератор электрического поля, анод и промежуточный электрод. Катод представляет собой термоионный катод. Генератор имеет энергию, достаточную для диссоциации молекул реагирующих газов. Анод расположен от катода на предварительно заданном расстоянии, ограничивающем реакционную газовую камеру. Газовая камера выполнена с возможностью вызывать взаимодействие между электронами и молекулами реагирующего газа. Промежуточный электрод расположен рядом с сепаратором и катодом. Промежуточный электрод выполнен с возможностью диссоциации молекул посредством электролиза на поверхности сепаратора с образованием продуктов. Молекулы реагирующего газа являются по меньшей мере молекулами одного из CO2 и H2O. Продуктами являются O2 и по меньшей мере один из CO и H2 . Кроме того, способ диссоциации молекул газа включает подачу молекул реагирующих газов в реактор. Реактор содержит катод, анод и сепаратор между анодом и катодом. По способу создают электрическое поле между анодом и катодом, имеющее энергию, достаточную для диссоциации реагента и для восстановления молекул реагирующих газов с помощью электролиза. Способ также включает нагревание источника электронов, включающего термоионный катод, для высвобождения из него свободных электронов. Затем происходит разделение O 2 и молекул других продуктов и выпуск молекул продукта. Молекулы газа являются по меньшей мере молекулами одного из CO 2 и H2O. Продукт состоит из O2 и по меньшей мере одного из CO и H2, либо смеси CO и H2. Техническим результатом изобретений является обеспечение низкозатратного высоэффективного цикла, который может быть использован в крупном масштабе для получения топлива без выброса CO2 в окружающую среду. 5 н. и 62 з.п. ф-лы, 9 ил.

2509828
выдан:
опубликован: 20.03.2014
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)

Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14. Реактор 1 заземляют и заполняют водой до образования разряда между железными электродами и поверхностью воды. Согласно второму варианту плоский горизонтальный охлаждаемый электрод 18 изолируют от стенок реактора 1 и подают на него высоковольтный потенциал от трансформатора Тесла 14. Реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы 23 из железа с устройством 24 перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом 18 до образования разряда. Через тонкостенные трубки подают водяной пар. Изобретение позволяет повысить чистоту водорода, снизить затраты энергии. 4 н. и 2 з.п. ф-лы, 2 ил., 2 пр.

2509719
выдан:
опубликован: 20.03.2014
УСТАНОВКА ДЛЯ ЭЛЕКТРОЛИЗА ВОДЫ ПОД ДАВЛЕНИЕМ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и кислорода с установленными на них датчиками давления водорода и кислорода, электрически связанных с блоком управления, клапанов выдачи водорода и кислорода из установки, расположенных на линиях водорода и кислорода, каждый ресивер снабжен линией заправки воды, линией слива воды и датчиком количества воды, при этом на линиях заправки и слива воды установлены клапаны, а датчики количества воды и клапаны на линиях слива воды электрически связаны с блоком управления. Изобретение также относится к способу эксплуатации установки для электролиза воды под давлением, который состоит в подаче воды и электрического тока в электролизер, накоплении водорода и кислорода в ресиверах, контроле параметров процесса, выравнивании давлений газов и последующей выдаче полученных газов потребителю, при этом перед началом цикла работы ресиверы водорода и кислорода заполняют водой от 15% до 30% объема соответствующего ресивера, а в процессе работы контролируют количество воды, регистрируют давление водорода и кислорода и в случае превышения допустимого перепада давлений водорода и кислорода производят слив воды из того ресивера, где давление газа выше, до выравнивания давлений в ресиверах. Техническим результатом изобретения является повышение экономичности установки на 15-20 процентов за счет исключения потерь газов, а также повышение безопасности ее эксплуатации за счет исключения возможности смешения газов. 2 н. и 1 з.п. ф-лы, 1 ил.

2508419
выдан:
опубликован: 27.02.2014
ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И ОЗОН-КИСЛОРОДНОЙ СМЕСИ

Изобретение относится к технологии электрохимических производств, в частности к конструкции электролизеров для получения водорода и озон-кислородной смеси, и может найти применение для нужд энергетики (охлаждение водородных генераторов на ТЭЦ, ГРЭС и АЭС), электроники (очистка поверхности полупроводниковых пластин). Электролизер для получения водорода и озон-кислородной смеси содержит анод и катод цилиндрической формы, расположенные коаксиально и скрепленные сверху и снизу фторопластовыми деталями, обеспечивающими подачу электролита и отвод электролита и газа, при этом корпусом служит катод, а анод расположен внутри катода. Анод выполнен в виде электропроводящей никелевой трубы со стеклоуглеродным покрытием, катод изготовлен из нержавеющей стали с никелевым покрытием или никеля, в качестве охлаждающей жидкости используют электролит, при этом электролизер связан с насосом, рефрижератором, емкостью с рабочим электролитом, дозирующим насосом, емкостью с концентратом электролита и деионизированной водой, а также с блоком анализа качества электролита.

Технический результат - упрощение конструкции электролизера, увеличение удельной производительности, снижение материалоемкости, обеспечение надежности, простоты монтажа и эксплуатации. 2 ил.

2507313
выдан:
опубликован: 20.02.2014
СПОСОБ ЛЕЧЕНИЯ АБДОМИНАЛЬНОГО ОЖИРЕНИЯ

Изобретение относится к медицине, а именно к эндокринологии и физиотерапии, и может быть использовано для лечения абдоминального ожирения. Для этого осуществляют криомассаж проблемных зон криопакетом объемом 300-500 мл при температуре -21--23°C со стабильной вибрацией по 5-10 с двукратно по 3-5 минут с паузой между циклами 1-2 минуты. Дополнительно проводят циркулярный душ длительностью 4-6 минут температурой 36-37°C в течение 5-10 сеансов. Кроме того, проводят жемчужную ванну с подводным массажем и подачей озона в течение 20-25 минут. Также осуществляют ультразвуковое воздействие на проблемные зоны с параметрами частота импульсов/коэффициент заполнения импульсов 90-100 Гц/90-100% и интенсивностью 0,7-1,0 Вт/см2 по 3-4 минуты на одно поле 10-15 процедур в течение 4-10 минут частотой 14-180 Гц. Способ обеспечивает повышение эффективности лечения за счет выбранного режима воздействия, способствующего достижению положительной динамики клинической симптоматики и биохимических показателей крови. 3 пр.

2506943
выдан:
опубликован: 20.02.2014
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ПРОИЗВОДИТЕЛЬНОСТИ РАЗЛОЖЕНИЯ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВОДОРОДНАЯ ЯЧЕЙКА)

Изобретение относится к способу увеличения производительности разложения воды. Способ включает разложение воды под действием резонансного электромагнитного поля и характеризуется тем, что разложение воды происходит под действием двух резонансных контуров, в которых вектора напряженностей электрического поля первого контура и напряженности магнитного поля второго контура также как вектор напряженности электрического поля второго контура и вектор напряженности магнитного поля первого контура действуют на воду одновременно. Причем вектора напряженности магнитных полей совпадают и направлены перпендикулярно векторам электрических полей, при этом в результате изменения диэлектрической проницаемости водяного конденсатора производится подстройка контуров на работу в резонансном режиме, которая заключается в предварительной подгонке индуктивных сопротивлений контуров до их резонансных значений, определяемых по максимальной производительности выделяемых газов, с последующим использованием полученных результатов в серийном производстве. Также изобретение относится к устройству (водородной ячейке). Использование настоящего изобретения позволяет повысить производительность разложения воды. 2 н.п. ф-лы, 1 ил.

2506349
выдан:
опубликован: 10.02.2014
ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ ВОДОРОДНЫХ АККУМУЛЯТОРОВ ИЗ ГИДРИДА МЕТАЛЛОВ С ВЫСОКОЙ СТЕПЕНЬЮ ПАССИВИРОВАНИЯ (АЛЮМИНИЙ, ТИТАН, МАГНИЙ)

Изобретение относится к зарядным устройствам аккумуляторов водорода и может быть использовано для зарядки указанных аккумуляторов водородом. Зарядное устройство для водородных аккумуляторов из гидрида металлов с высокой степенью пассивирования (алюминий, титан, магний), выполнено из стабилизированного источника электрического тока (1), проводов (2), электролизера (3) и аккумуляторов (4) водорода на основе гидрида алюминия (титана или магния) (5), при этом в электролизере (3) расположен электролит (6) из угольной кислоты H2CO3 в дистиллированной воде, который полностью покрывает два стоящих отдельно друг от друга аккумулятора (4) без внешних корпусов со свободным проникновением электролита (6) в структуру аккумулятора (4) из гидрида металла (5), причем один аккумулятор (4) подсоединен к катоду (7), а второй аккумулятор (8) - к аноду (9), причем на крышке (10) зарядного устройства расположена вертикальная труба (11) с клапаном сброса (12) излишнего давления, создаваемого продуктами электролиза. Образование гидридов в структурах металлов в электролизере под действием теплового поля является техническим результатом заявленного изобретения. 1 ил.

2505739
выдан:
опубликован: 27.01.2014
КАТОД ЭЛЕКТРОЛИЗЕРОВ ДЛЯ РАЗЛОЖЕНИЯ ВОДЫ С ВЫСОКИМИ РАБОЧИМИ ХАРАКТЕРИСТИКАМИ

Предложен катод для выделения водорода в электролитической ячейке, содержащий металлическую основу и покрытие, состоящее из чистого оксида рутения. Предлагаемый катод обеспечивает улучшение рабочих характеристик и увеличение срока службы электролизера при неустойчивом и периодическом снабжении энергии, таком как от солнечных батарей; также описан способ нанесения покрытия на металлическую основу. Кроме того, предложенный катод обеспечивает высокую эффективность в процессе электролиза щелочной воды. 2 н. и 11 з.п. ф-лы, 4 табл., 3 пр.

2505624
выдан:
опубликован: 27.01.2014
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМИКРОДИСПЕРСНОГО ПОРОШКА ОКСИДА НИКЕЛЯ НА ПЕРЕМЕННОМ ТОКЕ

Изобретение относится к способу получения ультрамикродисперсного порошка оксида никеля. Способ получения ультрамикродисперсного порошка оксида никеля включает электролиз в 17 М растворе гидроксида натрия на переменном синусоидальном токе частотой 20 Гц с никелевыми электродами. При этом процесс электролиза проводят при температуре 20-30°C и напряжении на электродах 4 В. Техническим результатом данного изобретения является разработка способа получения ультрамикродисперсного порошка оксида никеля, пригодного для использования в процессе каталитического получения наноуглеродных материалов пиролизом углеводородного сырья при уменьшении затрат на обогрев ячейки и упрощении ее конструкции. 3 пр.

2503748
выдан:
опубликован: 10.01.2014
Наверх