ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

Получение соединений или неметаллов электролитическими способами или способом электрофореза; устройства для них – C25B

Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C25 Электролитические способы; электрофорез; устройства для них
C25B Получение соединений или неметаллов электролитическими способами или способом электрофореза; устройства для них
C25B 1/00 Электролитические способы получения неорганических соединений или неметаллов
C25B 11/00 Электроды; их изготовление, не предусмотренное в других рубриках
C25B 13/00 Диафрагмы; перегородки
C25B 15/00 Эксплуатация или уход за электролизерами
C25B 3/00 Электролитические способы получения органических соединений
C25B 5/00 Электрогенеративные способы, т.е. способы получения соединений с одновременным выделением электричества
C25B 7/00 Производство соединений или неметаллов по способу электрофореза
разделение или очистка пептидов, например протеинов электрофорезом  C 07K 1/26
C25B 9/00 Электролизеры или узлы электролизеров;конструктивные элементы электролизеров; узлы конструктивных элементов, например узлы электродиафрагмы

Патенты в данной категории

ЭЛЕКТРОДНАЯ МАССА ДЛЯ САМООБЖИГАЮЩИХСЯ ЭЛЕКТРОДОВ ФЕРРОСПЛАВНЫХ ПЕЧЕЙ

Изобретение относится к электродной промышленности и ферросплавного производства и может быть использовано при изготовлении самообжигающихся электродов ферросплавных рудовосстановительных печей. Электродная масса для самообжигающихся электродов включает антрацит, литейный кокс, каменноугольный пек и отходы кремнистых и хромистых ферросплавов. Изобретение позволяет повысить электропроводность и увеличить механическую прочность электродов, а также снизить расход применяемого кокса и каменноугольного пека и полезно использовать мелкие отходы ферросплавов. 2 табл.

2529235
выдан:
опубликован: 27.09.2014
СПОСОБ ПОЛУЧЕНИЯ ЙОДИРУЮЩЕГО АГЕНТА

Изобретение относится к способу, включающему в себя следующие стадии: a) электрохимическое окисление 1 моля исходного ICl в кислотном водном растворе с образованием промежуточного производного со степенью окисления йода, равной (III); b) реагирование упомянутого промежуточного производного с йодом и c) получение 3 молей ICl. Использование настоящего способа позволяет избежать отрицательных факторов, связанных с применением больших объемов хлора. 19 з.п. ф-лы, 7 пр., 3 ил.

2528402
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СРЕДСТВА ДЛЯ ОЧИСТКИ ВОДЫ

Изобретение относится к способу получения жидкого средства для очистки воды. Способ включает электролиз водного раствора хлорида натрия в электролизере с неразделенными катодным и анодным пространствами и характеризуется тем, что электролиз осуществляют с использованием анода, изготовленного из алюминия или из сплавов алюминия. Использование предлагаемого способа позволяет расширить функциональные возможности получаемого средства. 1 з.п. ф-лы, 2 пр.

2528381
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ

Изобретение относится к способу получения нановискерных структур оксидных вольфрамовых бронз на угольном материале, в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % K 2WO4, 25 мол. % Li2WO4 и 45 мол. % WO3, с использованием платинового анода, при этом электроосаждение ведут на катоде из угольного материала с высокой удельной поверхностью, перед подачей на электрод импульса перенапряжения катод пропитывают расплавом в течение времени, достаточного для пропитки, но недостаточного для активного выгорания углерода из угольного катода. Использование настоящего способа позволяет получить нановискерные структуры вольфрамовых бронз на угольном материале, которые могут использоваться как катализаторы с высокой активностью, обладающие технологическими свойствами для процессов органического и нефтехимического синтеза. 3 пр., 1 табл., 6 ил.

2525543
выдан:
опубликован: 20.08.2014
БОРТОВАЯ ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения. Последняя содержит циркуляционный насос, кислородный и водородный контуры циркуляции воды. Каждый из контуров включает в себя соответствующую полость электролизера и газоотделитель в виде центробежного сепаратора. Сепараторы соединены с общим электроприводом постоянного тока циркуляционного насоса. Этот электропривод подключен к системе электропитания КА последовательно с электролизером. Кислородный контур снабжен входной водяной магистралью с клапаном и в нем установлен теплообменник, подключенный к системе терморегулирования КА. Техническим результатом изобретения является стабилизация режима работы электролизера и повышение надежности бортовой электролизной установки. 1 ил.

2525350
выдан:
опубликован: 10.08.2014
СПОСОБ ПОЛУЧЕНИЯ МАГНЕТИТА

Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза. Процесс проводят в трехэлектродном двуханодном элетролизере, в который заливают 1M раствор гидроксида натрия и подключают ток. Напряжение составляет 10 B, катодная плотность тока на катоде из титана 0,2 A/см2, анодная плотность тока на аноде из Ст3 0,3 A/см2, а на диоксидсвинцовом аноде на титановой основе - 0,1 А/см2. При этом происходит одновременное растворение анода из Ст3 и выделение кислорода на диоксидсвинцовом аноде на титановой основе. Изобретение позволяет получить магнетит без подачи воздуха для окисления железа, повысить чистоту продукта. 1 пр.

2524609
выдан:
опубликован: 27.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ АНОДОВ

Изобретение относится к области технологии изготовления металлооксидных анодов на основе титана с электрокаталитическим покрытием и может быть использовано в различных областях прикладной электрохимии при электролизе растворов широкого диапазона минерализации. Способ изготовления металлооксидного анода включает травление титановой основы в растворе кислоты с одновременной модификацией ее поверхности, формирование защитного подслоя титановой основы и нанесение электрокаталитического покрытия, при этом травление и модификацию поверхности титана проводят при введении в травильный раствор гидразинхлорида, а защитный подслой формируют из благородных металлов - иридия, платины. Гидразинхлорид вводят в травильный раствор в количестве 0,1-0,3 г/л. Изобретение позволяет повысить каталитическую активности анодов и их коррозионную стойкость благодаря обеспечению постоянства химического и фазового состава слоя на границе титановой основы и электрокаталитического покрытия. 2 з.п. ф-лы, 2 пр.

2522061
выдан:
опубликован: 10.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ГРАФИТИРОВАННЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к электродной промышленности и предназначено для использования при изготовлении графитированных изделий, в частности касается процесса пропитки различными веществами для устранения пористости. В способе изготовления графитированных изделий, преимущественно электродов, вакуумирование осуществляют поэтапно. Предварительно вакуумируют вспомогательную емкость разрежения. После этого емкость соединяют с автоклавом до уравновешения давления в емкости разрежения и автоклаве. Затем отсоединяют емкость от автоклава и доводят вакуумирование автоклава в автономном режиме до требуемого значения. Далее импрегнат подают в автоклав до полного его заполнения. После этого начинают процесс пропитки заготовок, создавая давление импрегната в автоклаве подачей сжатого газа в подпиточную емкость, заполненную импрегнатом до объема его расхода в автоклаве на пропитку пор в заготовках. Устройство для изготовления графитированных изделий, преимущественно электродов, снабжено вспомогательной емкостью разрежения, связанной с автоклавом и вакуум-насосом. Кроме того, устройство снабжено подпиточной емкостью с импрегнатом, связанной с автоклавом и нагнетательным насосом. Техническим результатом изобретения является сокращение производственного цикла, увеличение надежности, упрощение конструкции устройства и экологичности за счет утилизации вредных веществ производства. 2 н. и 5 з.п. ф-лы, 1 ил.

2522011
выдан:
опубликован: 10.07.2014
СПОСОБ ЭЛЕКТРОЛИЗА ВОДНЫХ РАСТВОРОВ ХЛОРИСТОГО ВОДОРОДА ИЛИ ХЛОРИДА ЩЕЛОЧНОГО МЕТАЛЛА В ЭЛЕКТРОЛИЗЕРЕ И УСТАНОВКА ДЛЯ РЕАЛИЗАЦИИ ДАННОГО СПОСОБА

Заявленное изобретение относится к способу электролиза водных растворов хлористого водорода или хлорида щелочного металла. В процессе электролиза хлорида щелочного металла предложено использование катода, потребляющего кислород, для чего процесс протекает при высоком избытке кислорода. Необходимый для электролиза кислород обеспечивается устройством для разделения газов, например вакуумно-напорным циклическим безнагревным адсорбционным устройством (VPSA) или воздухоразделительным устройством. Согласно предложенному изобретению обогащенная кислородом газовая среда, образовывающаяся в результате указанного процесса, снова направляется в устройство для разделения газов как питающий газ. Таким образом, устройство для разделения газов работает с питающим газом, обогащенным кислородом, который, в свою очередь, направляется к катоду, где происходит расходование кислорода. Повышение экономичности процесса является техническим результатом заявленного изобретения.2 н. и 2 з.п. ф-лы, 1 ил., 1 пр.

2521971
выдан:
опубликован: 10.07.2014
СПОСОБЫ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ И ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ, УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ПЕРВОГО СПОСОБА (ВОДОРОДНАЯ ЯЧЕЙКА)

Изобретение относится к водородной энергетике. Технический результат состоит в получении водорода разложением воды с увеличением частоты периодического воздействия напряженностей электрических полей на воду. Способ получения водорода из воды включает разложение воды под действием двух электромагнитных резонансных полей, вектора напряженностей электрических полей которых поочередно меняют направление на 180 градусов при постоянно направленной перпендикулярно им суммарной напряженности магнитных полей от индуктивности контуров. Водородная ячейка содержит два колебательных контура, конденсаторные пластины (13, 14) которых перфорированы таким образом, что пластины первого конденсатора (13) взаимодействуют через отверстия в пластине второго конденсатора (14) и, наоборот, пластины второго конденсатора (14) взаимодействуют через отверстия в пластине (13) первого. Индуктивности (11, 12), имеющие противоположную намотку, расположены между обкладками конденсаторов. 2 н.п. ф-лы, 4 ил.

2521868
выдан:
опубликован: 10.07.2014
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ

Изобретение относится к области химии. Реактор 1 для получения водорода содержит корпус 2, патрубок 10 для подачи воды, патрубок 11 для выхода водорода и патрубок 12 для удаления продуктов реакции водного окисления. Внутри реактора 1 расположен контейнер 6 с металлом 9, который установлен на изоляторах 8. Электрический ввод 5 соединен с высоковольтным выводом 13 трансформатора Тесла 14. Низковольтная обмотка 15 трансформатора Тесла 14 вместе с емкостью 16 образует последовательный резонансный контур, который присоединен к высокочастотному источнику питания 17. При подаче потенциала от высоковольтного вывода 13 трансформатора Тесла 14 на металл 9 на поверхности металла возникают плазменные высокочастотные разряды, которые разрушают пленку окислов на поверхности металла, и происходит реакция водного окисления металлосодержащего вещества с водой с выделением водорода. Изобретение позволяет снизить энергозатраты. 2 н. и 4 з.п. ф-лы, 1 ил.

2520490
выдан:
опубликован: 27.06.2014
СПОСОБ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ХИМИЧЕСКУЮ И АККУМУЛИРОВАНИЕ ЕЕ В ВОДОРОДСОДЕРЖАЩИХ ПРОДУКТАХ

Изобретение может быть использовано в химической промышленности, в системах производства топлива для транспорта и в стационарных энергоустановках. Способ преобразования солнечной энергии в химическую и аккумулирования ее в водородсодержащих продуктах включает производство биомассы с использованием солнечной энергии, которую подвергают реакции парокислородной каталитической конверсии с получением продуктов реакции, содержащих водород и диоксид углерода. Полученные продукты направляют в высокотемпературный электрохимический процесс для получения синтез-газа и кислорода. Из полученного синтез-газа на катализаторе в процессе Фишера-Тропша получают углеводороды, а кислород возвращают в начало процесса на конверсию. В качестве рабочего тела используют воду, которую при нагреве синтез-газом испаряют при давлении в диапазоне от 0,1 до 7,0 МПа и направляют на турбину для выработки механической и/или электроэнергии и теплоносителя. Изобретение позволяет снизить тепловые затраты на процесс получения энергоносителей и эффективно производить энергоносители при отсутствии кислорода из атмосферы. 12 з.п. ф-лы, 1 ил., 3 табл.

2520475
выдан:
опубликован: 27.06.2014
АКТИВАЦИЯ КАТОДА

Изобретение относится к способу активации катода в электролитической ячейке для получения хлората щелочного металла. Способ включает стадию, в которой проводят электролиз электролита, содержащего хлорид щелочного металла, в электролитической ячейке, в которой размещены по меньшей мере один анод и по меньшей мере один катод. При этом a) указанный электролит содержит хром в любой форме в количестве, варьирующем от приблизительно 0,01·10 -6 до приблизительно 100·10-6 моль/дм 3; b) указанный электролит содержит молибден, вольфрам, ванадий, марганец и/или их смеси в любой форме в совокупном количестве, варьирующем от приблизительно 0,1·10-6 до приблизительно 0,1·10-3 моль/дм3. Также изобретение относится к способу получения хлората щелочного металла. Использование настоящего способа позволяет снизить напряжение на клеммах ячейки. 2 н. и 11 з.п. ф-лы, 5 пр., 6 табл.

2518899
выдан:
опубликован: 10.06.2014
МАТЕРИАЛ ЭЛЕКТРОДА НА ОСНОВЕ ЖЕЛЕЗА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ ВОДОРОДА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к способу изготовления материала электрода для электрохимического получения водорода, который заключается в том, что на поверхность электрода наносят порошкообразную композицию Fe-C и осуществляют синтез нанокристаллических элементов Fe-C со средним размером в пределах 10-15 нм обработкой лазерными импульсами с длиной волны 1-1,5 мкм при плотности излучения 10 7-109 Вт/см2, скорости сканирования лазером 8-15 см/с, частоте импульсов 33-60 кГц в вакууме или в среде аргона, не доводя при этом процесс до плавления и появления карбида железа Fe3C. Изобретение также относится к материалу электрода на основе железа в качестве катодного материала для электрохимического получения водорода. Технический результат заключается в модификации поверхности железа, позволяющей повысить электрокаталитическую активность такого материала. 2 н.п.ф-лы, 2 табл.

2518466
выдан:
опубликован: 10.06.2014
РЕГЕНЕРАТИВНАЯ ЭЛЕКТРОХИМИЧЕСКАЯ СИСТЕМА ЭНЕРГОСНАБЖЕНИЯ ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО АППАРАТА С ЗАМКНУТЫМ ПО ВОДЕ РАБОЧИМ ЦИКЛОМ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ

Изобретение относится к энергетике, к системе энергоснабжения космических аппаратов и напланетных станций. Электрохимическая система энергоснабжения космического аппарата с замкнутым по воде рабочим циклом включает электролизер воды и кислородо-водородный генератор, гидравлически связанные друг с другом через резервуар сбора воды и пневматически сообщающиеся с баллонами хранения водорода и кислорода, последний из которых соединен с системой обеспечения жизнедеятельности космического аппарата пневмомагистралью с запорным элементом, металло-водородный аккумулятор, имеющий штуцер для водорода, через который он соединен с баллоном хранения водорода пневмомагистралью с запорным элементом. Способ эксплуатации указанной системы включает осуществление замкнутого цикла реакций разложения воды током на водород и кислород, стехиометрическое соединение этих газов с получением электричества и воды с отбором из этого цикла кислорода, избыток водорода используют в качестве реагента в металло-водородном аккумуляторе, который предварительно заряжают, удаляя из него образующийся при этом водород. Технический результат - сохранение энергоемкости утилизация избыточного водорода, повышение безопасности системы. 2 н.п. ф-лы, 1 ил.

2516534
выдан:
опубликован: 20.05.2014
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ЭЛЕМЕНТНОЙ СЕРЫ ИЗ СЕРОВОДОРОДА В ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ

Изобретение относится к области органической химии, в частности, к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей, и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности. Способ получения элементной серы из сероводорода включает проведение электролиза сероводорода на платиновом аноде в органическом растворителе в присутствии фонового электролита при температуре 20-25°С и атмосферном давлении. Предварительно перед проведением электролиза сероводорода в органический растворитель вносят триэтиламин. Технический результат - усовершенствование процесса получения элементной серы, позволяющее значительно снизить значение анодного перенапряжения при проведении электросинтеза серы на основе сероводорода. Конверсия сероводорода в элементную серу - 95-98%. 1 прим.

2516480
выдан:
опубликован: 20.05.2014
ЭЛЕКТРОХИМИЧЕСКАЯ МОДУЛЬНАЯ ЯЧЕЙКА ДЛЯ ОБРАБОТКИ РАСТВОРОВ ЭЛЕКТРОЛИТА

Изобретение относится к устройствам для электрохимической обработки водных растворов и может быть использовано в процессах электрохимического получения различных химических продуктов путем электролиза водных растворов, в частности смеси оксидантов при электролизе водного раствора хлоридов щелочных или щелочноземельных металлов. Модульная ячейка, содержащая цилиндрические основной и противоэлектрод, установленные вертикально, а также керамическую диафрагму, размещенную коаксиально основному электроду и разделяющую межэлектродное пространство на герметичные анодную и катодную камеры с приспособлениями для подачи обрабатываемых жидкостей и отвода жидкостей и газов, дополнительно снабжена верхними и нижними заглушками, при этом ячейка содержит один или несколько основных вертикальных электродов и более одного противоэлектрода, при этом основные электроды являются катодами, а противоэлектроды - анодами, и аноды закреплены в верхней и нижней заглушках, диафрагмы закреплены или на заглушках, или на катодах, и ячейка снабжена корпусом, на верхней и нижней частях которого также установлены заглушки. Повышение производительности ячейки по анодным продуктам, за счет сокращения установки вспомогательных коммуникаций, компактность и простота устройства обеспечивают расширение ее функциональных возможностей, что является техническим результатом. 8 з.п. ф-лы, 3 ил.

2516226
выдан:
опубликован: 20.05.2014
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПРОДУКТОВ АНОДНОГО ОКИСЛЕНИЯ РАСТВОРОВ ХЛОРИДОВ ЩЕЛОЧНЫХ ИЛИ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Изобретение относится к устройствам для электрохимической обработки водных растворов. Установка содержит электрохимический реактор, выполненный из проточных электрохимических снабженных корпусом модульных ячеек, каждая из которых содержит один или несколько вертикальных катодов и три или более анода. Коаксиально каждому катоду установлена диафрагма, аноды установлены в корпусе между наружными поверхностями диафрагм и внутренними стенками корпуса, при этом в плоскость поперечного сечения корпуса условно вписан один правильный многоугольник с числом вершин 3-12, или в плоскость поперечного сечения корпуса условно вписаны несколько плотноупакованных правильных многоугольников, каждый из которых является или равносторонним треугольником, или квадратом, или шестиугольником, при этом коаксиально размещенные катоды и диафрагмы установлены в центре многоугольника или многоугольников, а аноды - в вершинах многоугольника или многоугольников. Каждая ячейка реактора снабжена катодным циркуляционным контуром с емкостью в виде теплообменника. Технический результат - упрощение установки большой производительности, снижение расхода энергии, увеличение выхода целевых продуктов - смеси оксидантов при одновременном повышении надежности. 13 з.п. ф-лы, 4 ил., 2 пр.

2516150
выдан:
опубликован: 20.05.2014
УСТРОЙСТВО И СПОСОБ ДЛЯ ПОЛУЧЕНИЯ ГАЗОВОГО ВОДОРОДНО-КИСЛОРОДНОГО ТОПЛИВА ИЗ ВОДЫ (ВАРИАНТЫ)

Изобретение относится к устройству получения газового водородно-кислородного топлива из воды методом электролиза, содержащем электролизер с двумя электродами и источник питания, электроды выполнены в виде двух, внешнего и внутреннего цилиндров с общей осью симметрии, внешний цилиндр совмещен с рубашкой водяного охлаждения электролизера и заземлен, а внутренний цилиндр выполнен в виде стакана с боковыми стенками и сплошным дном, закреплен на изоляторе внутри корпуса электролизера и имеет входное отверстие, совмещенное с отверстием в корпусе электролизера для подвода дистиллированной воды, выходной патрубок электролизера расположен осесимметрично относительно цилиндрических электродов за сплошным дном внутреннего цилиндрического электрода и снабжен рубашкой водяного охлаждения, а высокочастотный источник питания соединен через первый высокочастотный конденсатор с резонансным высокочастотным трансформатором Тесла с выходным напряжением 1-500 кВ, частотой 0,5-100 кГц, высоковольтный вывод которого через высоковольтный диод соединен с внутренним цилиндрическим электродом и с одной обкладкой второго высокочастотного конденсатора, другая обкладка конденсатора соединена с внешним цилиндрическим электродом. В способе получения газового водородно-кислородного топлива электролизом воды при подаче электрической энергии от источника питания на электроды внутри реактора электролиза на электроды подают от высокочастотного источника питания через высоковольтный резонансный высокочастотный трансформатор Тесла и высоковольтный диод электростатические пакеты высоковольтных высокочастотных импульсов одной полярности с выходным напряжением 1-500 кВ, частотой 0,5-100 кГц, амплитуда которых постоянно возрастает для постепенного ослабления межмолекулярных связей водорода с группой ОН и кислородом в дистиллированной воде, а при появлении ионного тока между электродами амплитуду высоковольтных высоко-частотных импульсов уменьшают до прекращения ионного тока между электродами и процесс увеличения амплитуды высоковольтных высокочистотных импульсов повторяют, а скважность подачи пакета высоковольтных импульсов выбирают из условия ограничения и блокирования ионного тока между электродами электролизера. В варианте способа получения газового водородно-кислородного топлива электролизом воды при подаче электрической энергии от источника питания на электроды внутри реактора электролиза высокочастотный источник питания соединяют с резонансным высокочастотным трансформатором Тесла с выходным напряжением 1-500 кВ, частотой 0,5-100 кГц, высоковольтный вывод трансформатора Тесла соединяют через высокочастотный высоковольтный диод с высокочастотным электрическим конденсатором и с изолированным электродом электролизера, электролизер и второй электрод заземляют и подбирают путем регулирования частоты, напряжения и величины электрической емкости конденсатора скважность пакетов высоковольтных импульсов через дистиллированную воду и электроды реактора электролиза и блокируют появление и увеличение ионного тока между электродами электролизера. Технический результат заключается в создании устройства, позволяющего получать газовое топливо из воды в виде водородно-кислородной смеси при затратах энергии менее 0,13 кВт ч на 1 м3 газового топлива. 6 н. и 3 з.п. ф-лы, 4 ил., 2 пр.

2515884
выдан:
опубликован: 20.05.2014
СПОСОБ РЕГЕНЕРАЦИИ ИОНООБМЕННОЙ МЕМБРАНЫ

Изобретение относится к электрохимическим производствам, в частности к технологии получения хлора и гидроокисей щелочных металлов электролизом раствора хлорида щелочного металла в электролизере с синтетической ионообменной мембраной. Регенерацию ионообменной мембраны, применяемой для получения хлора и гидроокисей щелочных металлов, осуществляют путем подачи в электродные камеры электролизера раствора, состоящего из лимонной кислоты 0,5-20% масс., триэтилсилилметакриловой кислоты 0,1-1,5% масс., этилового спирта 20-60% масс. и воды 18,5-79,4% масс. с температурой раствора 20-90°C при поддержании напряжения на электролизере 1,3-2,4 В без извлечения мембраны из электролизера. Технический результат - увеличение срока службы мембраны без дополнительных затрат на ее извлечение и регенерацию. 1 табл., 2 пр.

2515453
выдан:
опубликован: 10.05.2014
СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННОЙ ВОДЫ

Изобретение относится к способу активации воды, заключающемуся в ее электролизе между двумя электродами, разделенными между собой пористой диафрагмой, между которыми подано напряжение, отрицательный и положительный потенциалы которого соединены соответственно с катодным и анодным электродами. Способ характеризуется тем, что электроды выполняют из шунгита, причем в аноде и в анодной камере возбуждают ультразвуковые колебания, частота которых лежит выше частоты порога кавитации в диапазоне от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2. По сравнению со способами предшествующего уровня техники, загрязняющими активированную воду небезопасными для человека и животных катионами металлов электродов, настоящий способ не только позволяет исключить этот отрицательный фактор, но и за счет использования в качестве материала для электродов полезного для человека и животных шунгита и интенсификации процессов образования полезных катионов на шунгитовом аноде при помощи ультразвука преобразовать этот отрицательный фактор в положительный.

2515243
выдан:
опубликован: 10.05.2014
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО ПЕРРЕНАТА АММОНИЯ

Изобретение относится к способу получения чистого перрената аммония, а также к высокочистому перренату аммония. Способ получения чистого перрената аммония путем электролиза включает получение водной суспензии, содержащей технический перренат аммония, добавление азотной кислоты, введение полученной суспензии в катодное пространство электролитической ячейки, приложение напряжения, катодное восстановление азотной кислоты до азотистой кислоты, взаимодействие азотистой кислоты с аммониевыми ионами перрената аммония с образованием водной рениевой кислоты, удаление ионов калия из водной рениевой кислоты и отделение чистого перрената аммония от рениевой кислоты добавлением аммиака. Перренат аммония представляет собой кристаллический агломерат с размером больше 10 мкм, содержащий менее 5 ч/млн калия. Также предложено применение перрената аммония в качестве предшествующего вещества для получения рениевых соединений и/или металлического рения для применения в суперсплавах или для нанесения покрытий на рентгеновские вращающиеся аноды. Изобретение обеспечивает эффективный и экологичный способ получения чистого перрената аммония. 3 н. и 14 з.п. ф-лы, 3 ил., 1 табл., 6 пр.

2514941
выдан:
опубликован: 10.05.2014
ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ РАСТВОРА ГИПОХЛОРИТА НАТРИЯ

Изобретение относится к очистке воды, а именно к устройствам для обеззараживания питьевых и сточных вод, бассейнов и прочих водных объектов, использующих водные растворы хлора и других хлорсодержащих соединений, в частности гипохлорита натрия, и может быть использовано в технологиях водоподготовки. Электролизер смонтирован в корпусе 1, в верхней части которого имеются выходной патрубок 3, а в нижней входной патрубок 2. Спиралевидный анод 4 выполнен из титановой проволоки с металлооксидным покрытием, а катод 5 из электропроводящего стержня и расположен коаксиально и равноудалено относительно анода 4. Рабочая площадь анода в два раза и более превышает рабочую площадь катода. Технический результат заключается в том, чтобы обеспечить непрерывную работу электролизера с минимальным ремонтно-профилактическим обслуживанием. 1 ил.

2514194
выдан:
опубликован: 27.04.2014
МАТЕРИАЛ КАТОДА НА ОСНОВЕ НАНОКРИСТАЛЛИЧЕСКОГО ЦЕМЕНТИТА, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ, КАТОД ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДНЫХ ЩЕЛОЧНЫХ И КИСЛОТНЫХ РАСТВОРОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Группа изобретений относится к изготовлению электродов для электролитического получения водорода из водных щелочных и кислотных растворов. Способ получения нанокристаллического композиционного материала катода включает проведение механоактивации смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошковой смеси из наноразмерных зерен цементита Fe3C и -Fe при их соотношении в мас.%: (90÷95):(10÷5). Способ изготовления катода включает предварительную выдержку упомянутого нанокристаллического композиционного материала в вакууме 5÷10 Па в течение 1÷2 ч при температуре 450÷550°С, после чего проводят его магнитно-импульсное прессование при амплитуде 1÷2 ГПа и длительности импульсов давления 300÷400 мкс. Обеспечивается изготовление катода с пониженным перенапряжением реакции электрохимического выделения водорода. 4 н. и 1 з.п. ф-лы, 1 пр., 5 ил.

2511546
выдан:
опубликован: 10.04.2014
ЭЛЕКТРОЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА ГЕКСАБОРИДА ДИСПРОЗИЯ

Изобретение относится к электролитическим способам получения чистого гексаборида диспрозия. В качестве источника диспрозия используют безводный трихлорид диспрозия, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлоридов калия и натрия. Электролиз ведут в потенциостатическом режиме при температуре 700±10°С, плотностях тока от 0,1 до 1,0 А/см2 и потенциалах электролиза от 2,5 до 2,8 В относительно стеклоуглеродного квазистационарного электрода сравнения. Техническим результатом является получение чистого ультрадисперсного порошка гексаборида диспрозия, повышение скорости синтеза целевого продукта из расплавленного электролита и снижение энергозатрат. 2 пр.

2510630
выдан:
опубликован: 10.04.2014
СПОСОБ ПРОИЗВОДСТВА ХЛОРА, КАУСТИЧЕСКОЙ СОДЫ И ВОДОРОДА

Изобретение относится к способу производства хлора, гидроксида щелочного металла и водорода и устройству с компьютерным управлением для осуществления заявленного способа, при этом способ включает следующие стадии: (а) приготовление рассола путем растворения источника хлорида щелочного металла в воде; (b) удаление из рассола, полученного на стадии (а), щелочного осадка в присутствии пероксида водорода или в присутствии, самое большее, 5 мг/л активного хлора посредством фильтра из активированного угля и получение готового рассола; (с) обработка, по меньшей мере, части готового рассола, полученного на стадии (b), на стадии ионообмена; (d) обработка, по меньшей мере, части рассола, полученного на стадии (с), на стадии электролиза; (е) выделение, по меньшей мере, части хлора, гидроксида щелочного металла, водорода и рассола, полученных на стадии (d); (f) обработка, по меньшей мере, части рассола, полученного на стадии (е), на стадии обесхлоривания, осуществляемой в присутствии пероксида водорода; и (g) рециркулирование, по меньшей мере, части обесхлоренного рассола, полученного на стадии (f), на стадию (а). Технический результат заключается в обеспечении экономически целесообразного способа производства хлора, автоматизированного до такой степени, что оно пригодно для дистанционного управления и требует минимального непосредственного внимания и поддержки. 2 н. и 9 з.п. ф-лы, 1 ил.

2509829
выдан:
опубликован: 20.03.2014
СИСТЕМА И СПОСОБ ПРОИЗВОДСТВА ХИМИЧЕСКОЙ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ

Настоящее изобретение относится к системе и способу производства химической потенциальной энергии и может быть использовано в производстве эффективного топлива, которое можно было бы использовать в чистых энергетических процессах, при которых не образуются и не выделяются парниковые газы и другие загрязнители окружающей среды. Система диссоциации газов включает сепаратор газовых компонентов, источник электронов, выполненный с возможностью испускания электронов, генератор электрического поля, анод и промежуточный электрод. Катод представляет собой термоионный катод. Генератор имеет энергию, достаточную для диссоциации молекул реагирующих газов. Анод расположен от катода на предварительно заданном расстоянии, ограничивающем реакционную газовую камеру. Газовая камера выполнена с возможностью вызывать взаимодействие между электронами и молекулами реагирующего газа. Промежуточный электрод расположен рядом с сепаратором и катодом. Промежуточный электрод выполнен с возможностью диссоциации молекул посредством электролиза на поверхности сепаратора с образованием продуктов. Молекулы реагирующего газа являются по меньшей мере молекулами одного из CO2 и H2O. Продуктами являются O2 и по меньшей мере один из CO и H2 . Кроме того, способ диссоциации молекул газа включает подачу молекул реагирующих газов в реактор. Реактор содержит катод, анод и сепаратор между анодом и катодом. По способу создают электрическое поле между анодом и катодом, имеющее энергию, достаточную для диссоциации реагента и для восстановления молекул реагирующих газов с помощью электролиза. Способ также включает нагревание источника электронов, включающего термоионный катод, для высвобождения из него свободных электронов. Затем происходит разделение O 2 и молекул других продуктов и выпуск молекул продукта. Молекулы газа являются по меньшей мере молекулами одного из CO 2 и H2O. Продукт состоит из O2 и по меньшей мере одного из CO и H2, либо смеси CO и H2. Техническим результатом изобретений является обеспечение низкозатратного высоэффективного цикла, который может быть использован в крупном масштабе для получения топлива без выброса CO2 в окружающую среду. 5 н. и 62 з.п. ф-лы, 9 ил.

2509828
выдан:
опубликован: 20.03.2014
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА ИЗ ВОДЫ (ВАРИАНТЫ)

Изобретение относится к области химии. Согласно первому варианту для получения водорода железные стержни изолируют от стенок реактора 1 и подают на них высоковольтный потенциал от трансформатора Тесла 14. Реактор 1 заземляют и заполняют водой до образования разряда между железными электродами и поверхностью воды. Согласно второму варианту плоский горизонтальный охлаждаемый электрод 18 изолируют от стенок реактора 1 и подают на него высоковольтный потенциал от трансформатора Тесла 14. Реактор заземляют, внутри реактора устанавливают вертикально тонкостенные трубы 23 из железа с устройством 24 перемещения, уменьшают расстояние между тонкостенными трубками и плоским электродом 18 до образования разряда. Через тонкостенные трубки подают водяной пар. Изобретение позволяет повысить чистоту водорода, снизить затраты энергии. 4 н. и 2 з.п. ф-лы, 2 ил., 2 пр.

2509719
выдан:
опубликован: 20.03.2014
ЭЛЕКТРОД ОЗОНАТОРНОЙ УСТАНОВКИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к технологическому оборудованию, предназначенному для использования в производстве озонаторных установок. Электрод озонаторной установки представляет собой полую цельнопаяную конструкцию, состоящую из двух одинаковых мембран с диэлектрическим барьером на внешней поверхности; внешнего и внутреннего проставочных колец, определяющих высоту электрода; теплообменной насадки, размещенной в полости электрода для повышения эффективности охлаждения его рабочих поверхностей при синтезе озона; штуцеров для подвода и отвода теплоносителя, диаметрально расположенных на внешнем кольце. Мембраны, изготовленные из металла или сплава с вентильными свойствами, имеют форму диска с центральным отверстием и отбортовкой по внешнему и внутреннему диаметрам, выполненной для формирования электрического разряда в пределах активных зон электрода. Тепловой контакт внутренних поверхностей мембран с насадкой и проставочными кольцами, а также герметичность электрода обеспечивают вакуумной пайкой. Подготовку поверхности деталей к пайке и их защиту от окисления производят в экологически чистых растворах. Сборку и пайку конструкции осуществляют в сборочно-паяльном приспособлении, изготовленном из металла с более низким по сравнению с материалами электрода температурным коэффициентом линейного расширения. В процессе нагрева конструкции при температуре ниже температуры плавления припоя осуществляют терморихтовку плоских поверхностей электрода за счет направленного термического удлинения проставочных колец и ребер насадки, чем достигается эквидистантность разрядного промежутка электродов при их сборке. Одновременно при соответствующих температурах производят гомогенизацию металла и вакуумное травление рабочих поверхностей электрода для последующего создания на них диэлектрического барьера. Диэлектрический барьер формируют электрохимическим путем в виде оксидной пленки. После образования на рабочих поверхностях электродов барьерного слоя производят их сборку совместно с дистанцирующей прокладкой для создания заданного разрядного промежутка. 2 н.п. ф-лы, 1 ил.

2509180
выдан:
опубликован: 10.03.2014
УСТРОЙСТВО ДЛЯ ГАЗОПЛАМЕННЫХ РАБОТ

Изобретение относится к технологическим процессам обработки металлов, а более конкретно к устройствам для выполнения газопламенных работ типа пайки, сварки, резки металлов c использованием электрохимических способов получения гремучего газа для выполнения этих работ. Устройство содержит горелку, гидрозатвор, электролизер для выделения водорода и кислорода с получением гремучего газа, блок питания, трубопровод. Электролизер выполнен в виде батареи, составленной из отдельных, последовательно подключенных электролизных ячеек. Полюса батареи подключены к противоположным по знаку полюсам блока питания. В качестве отдельной электролизной ячейки использована отработавшая свой ресурс и предварительно разряженная банка железоникелевого щелочного аккумулятора. Ячейки снабжены выходными патрубками для отвода полученного гремучего газа, связанными с трубопроводом, соединенным с гидрозатвором. В гидрозатворе для коррекции состава пламени использована водная эмульсия с углеводородными соединениями, кроме того, гидрозатвор снабжен отделителем капель от газовой смеси. Устройство является более простым и дешевым. 2 ил.

2508970
выдан:
опубликован: 10.03.2014
Наверх