ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков – B22F

Раздел B РАЗЛИЧНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ; ТРАНСПОРТИРОВАНИЕ
B22 Литейное производство; порошковая металлургия
B22F Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков
B22F 1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава
 C 04,  C 08 имеют преимущество
B22F 3/00 Способы и устройства для изготовления заготовок или изделий из металлических порошков
B22F 5/00 Изготовление особой формы заготовок или изделий из металлических порошков
B22F 7/00 Изготовление составных слоистых материалов, заготовок или изделий с использованием металлических порошков путем спекания порошка с одновременным уплотнением или без него
B22F 8/00 Изготовление изделий из скрапа или из металлических порошковых отходов
B22F 9/00 Изготовление металлических порошков или их суспензий

Патенты в данной категории

СПОСОБ ИЗГОТОВЛЕНИЯ СКОЛЬЗЯЩИХ КОНТАКТОВ

Изобретение относится к порошковой металлургии, в частности к получению скользящих контактов. Может использоваться в электротехнике для изготовления щеток электромашин, контактных вставок для устройств токосъема городского и железнодорожного транспорта. Порошковую смесь вальцуют в калибре, образованном четырьмя приводными обжимными валками, придавая полученному полуфабрикату сечение, близкое к готовому контакту, и длину, равную нескольким скользящим контактам. Вальцевание ведут при соотношении поперечного сечения контейнера к поперечному сечению калибра, равном 1,5-3,0. После выхода из калибра полуфабрикат разделяют на отдельные заготовки, и перед прессованием их нагревают до температуры 110-140°С. Обеспечивается повышение прочности и увеличение электропроводимости. 2 ил.

2529605
выдан:
опубликован: 27.09.2014
СПОСОБ ПРОИЗВОДСТВА ЦИЛИНДРИЧЕСКИХ ПОКОВОК ИЗ СКОМПАКТИРОВАННЫХ СПЕЧЕННЫХ ЗАГОТОВОК МЕТАЛЛИЧЕСКИХ ПОРОШКОВ

Изобретение относится к области порошковой металлургии и может быть использовано при производстве цилиндрических поковок заданной плотности штамповкой скомпактированных спеченных заготовок, полученных из металлических порошков. Производят осадку в торец нагретой исходной цилиндрической заготовки в закрытом штампе. Готовую поковку извлекают из штампа с использованием выталкивателя и охлаждают. Деформирование заготовки осуществляют с соблюдением условия, выраженного в виде приведенного математического выражения, в которое входят относительное обжатие заготовки, ее относительная радиальная деформация, относительная плотность заготовки и относительная плотность поковки. В результате обеспечивается получение цилиндрических поковок с заданной плотностью, гарантирующей необходимый комплекс физико-механических свойств изготавливаемых из них деталей. 1 ил., 1 пр.

2529345
выдан:
опубликован: 27.09.2014
ПРЕСС-ИНСТРУМЕНТ ДЛЯ ПРОХОДНОГО ПРЕССОВАНИЯ ПОРОШКОВЫХ МАТЕРИАЛОВ

Изобретение относится к прессам, в частности к пресс-инструменту для прессования порошковых пиротехнических материалов. Пресс-инструмент для проходного прессования содержит примыкающую к объемному дозатору, расположенному под окном загрузочного бункера с пиротехническим составом и соосную пуансону, матрицу. Формующий участок канала матрицы сужается до диаметра калибрующего участка. Профиль формующего участка канала матрицы выполнен криволинейным. В калибрующем участке канала матрицы продольно закреплены распределенные по периферии радиальные пилоны. Снаружи матрица снабжена многозаходными канавками для прохода охлаждающего воздуха. Обеспечивается оптимизация технологических параметров проходного прессования, исключение воспламенения порошкового материала, а также снижение трибодинамических нагрузок в формующем участке матрицы. 3 ил., 1 табл.

2529329
выдан:
опубликован: 27.09.2014
СПОСОБ ПОЛУЧЕНИЯ СВЕРХТВЕРДОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ КУБИЧЕСКОГО НИТРИДА БОРА ИЛИ СИНТЕТИЧЕСКОГО АЛМАЗА ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА

Изобретение относится к порошковой металлургии, в частности к получению сверхтвердых композиционных материалов. Может использоваться для изготовления лезвийных инструментов, работающих в условиях непрерывного и прерывистого резания закаленных сталей, чугунов, твердых сплавов и других труднообрабатываемых материалов. Твердосплавную шихту размещают в пресс-форме и после проведения процесса прессования получают подложку. Предварительное спекание проводят при температуре 1150°C для получения подложки с плотностью менее 100%. Спеченную подложку помещают в установку для нанесения покрытия из титана или нитрида титана толщиной 3-5 мкм. На поверхности подложки с покрытием размещают переходный слой из материала подложки и материала режущего слоя, в соотношении 1:1, при этом размеры зерен переходного слоя из смеси порошков в три раза превосходят размеры зерен исходного материала подложки. После этого на поверхность переходного слоя размещают порошок материала режущего слоя и спекают в камере высокого давления. 2 табл.

2529141
выдан:
опубликован: 27.09.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВОК ИЗ ТИТАНА

Изобретение относится к цветной металлургии, в частности к изготовлению заготовок из титановой губки. Способ изготовления заготовок из титана включает размещение частиц титановой губки в камере пресса, компактирование частиц губки до получения заготовки, ее прессование, удаление загрязнений с поверхности прессованной заготовки, покрытие ее смазкой и последующую прокатку. Перед размещением частиц титановой губки в камере пресса их нагревают в вакуумной нагревательной печи до температуры 700-800°C, легируют водородом до концентрации 0,1-0,9 мас.%, после чего снижают температуру в печи до температуры не ниже 300°C, компактирование ведут при температуре 300-700°С, прессование компактных заготовок осуществляют полунепрерывным методом через матрицу при температуре не выше 700°C с коэффициентом вытяжки не более двух, а затем при температуре не выше 700°C и коэффициенте вытяжки не менее трех, при этом прокатку заготовок проводят при температуре не выше 700°С, после которой осуществляют отжиг в вакууме при температуре не ниже 700°C. Обеспечивается возможность обрабатывать труднодеформируемый титан при более низких температурах, повышаются механические свойства получаемых заготовок. 1 пр.

2529131
выдан:
опубликован: 27.09.2014
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗНОГО ПОРОШКА

Изобретение относится к порошковой металлургии. Способ получения железного порошка включает подготовку железоуглеродистого расплава с содержанием углерода 3,9-4,3 мас.%, распыление его сжатым воздухом в воду, обезвоживание, сушку с получением порошка-сырца с отношением концентрации кислорода к углероду, равным 1,1-2,0, и измельчение до крупности частиц не более 0,250 мм. Измельченный порошок-сырец смешивают с гранулированными оксидами железа, полученными из отработанных солянокислых травильных растворов прокатного производства, с концентрацией примесей не более 2 мас.% и размером гранул не более 0,160 мм. Определяют концентрацию гранулированных оксидов железа в смеси с порошком-сырцом, а затем проводят отжиг полученной смеси в печи при 950-1000°C в течение 1,5-2 ч в слое высотой 25-35 мм на непрерывно движущейся ленте и последующее дробление с выделением годной фракции железного порошка с размером частиц менее 0,200 мм. Обеспечивается получение качественного железного порошка с высокой химической чистотой, удовлетворительной текучестью, высокой уплотняемостью и повышенной прочностью прессовки. 2 табл., 3 пр.

2529129
выдан:
опубликован: 27.09.2014
КОМПОЗИЦИЯ, УЛУЧШАЮЩАЯ ОБРАБАТЫВАЕМОСТЬ РЕЗАНИЕМ

Изобретение относится к порошковой металлургии, в частности к получению изделий на основе железа, пригодных для обработки резанием. Порошковая композиция на основе железа содержит порошок на основе железа и улучшающую обрабатываемость резанием добавку, содержащую по меньшей мере один силикат из группы глинистых минералов. Кроме того, по меньшей мере один силикат может быть выбран из группы различных видов слюды, при этом улучшающая обрабатываемость резанием добавка содержится в количестве менее 0,5 мас.%. Спеченную деталь получают путем прессования упомянутой порошковой композиции на основе железа при 400-1200 МПа и спекания при 1000-1300°С. Порошковая композиция обеспечивает улучшение обрабатываемости резанием деталей, подвергаемых операциям со снятием стружки инструментальными материалами разных типов. 3 н. и 24 з.п. ф-лы, 2 ил., 20 табл., 9 пр.

2529128
выдан:
опубликован: 27.09.2014
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Изобретение относится к порошковой металлургии, в частности к области производства металломатричного композитного материала конструкционного назначения. Может применяться в атомном машиностроении для эффективной нейтронной защиты, а также при разработке авиакосмической техники. Смесь из порошка карбида бора, алюминиевой пудры и гранулированного порошка алюминия загружают в стальную оболочку, на внутреннюю поверхность которой наносят состав, препятствующий соединению оболочки с порошковой смесью. Затем порошковую смесь уплотняют, закрывают оболочку, нагревают и подвергают ее прокатке. Прокатку порошковой смеси в оболочке осуществляют при температуре 590-610°C с обжатием порошковой смеси не менее 60% и оболочки не более 20%. После прокатки из оболочки извлекают компактированную заготовку, разрезают ее на части, формируют слоистый пакет для последующей горячей прокатки, в котором части полученной компактированной заготовки размещают между листовыми заготовками из алюминиевых сплавов и прослоек из технически чистого алюминия, горячую прокатку пакета осуществляют при температуре 400-430°C и обжатии не менее 50%. 5 з.п. ф-лы, 1 табл., 2 ил.

2528926
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ МОДИФИКАТОРА ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ

Изобретение относится к литейному и металлургическому производству, в частности к получению модификатора для алюминиевых сплавов. Способ включает смешивание порошка носителя с ультрадисперсным модифицирующим порошком в планетарной мельнице и прессование полученной композиции. В качестве ультрадисперсного модифицирующего порошка используют композицию порошков карбида кремния (SiC) - 50÷70%, нитрида кремния (Si3N4) - 20÷30%, гексафторалюмината натрия (Nа3АlF 6) - 10÷20%, полученных по азидной технологии самораспространяющегося высокотемпературного синтеза, с размерами частиц 70-100 нм, при этом карбид кремния имеет -модификацию, а в качестве носителя ультрадисперсного порошка используют порошок меди с размером частиц менее 180 мкм в соотношении медь:ультрадисперсный порошок=9:1. Изобретение позволяет изготавливать прутки, содержащие 10% ультрадисперсной модифицирующей композиции, при этом использование модификатора при модифицировании алюминиевых сплавов позволяет измельчать дендриты -А1 в 2,4 раза для повышения механических свойств сплава. 1 табл., 1 ил.

2528598
выдан:
опубликован: 20.09.2014
СПОСОБ ПОДГОТОВКИ ШИХТЫ ПОРОШКОВОЙ ПРОВОЛОКИ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛА ЕСТЕСТВЕННОГО ОТКОСА ПОРОШКОВЫХ МАТЕРИАЛОВ

Изобретение относится к порошковой металлургии, в частности к изготовлению сварочной порошковой проволоки. Может использоваться при производстве любых видов порошковых проволок. Готовят шихту для порошковой проволоки путем сушки и просева каждого компонента через сито № 0315 или № 02, дозировки компонентов и их перемешивания. Определяют угол естественного откоса полученной шихты при помощи воронки, выполненной из нержавеющей немагнитной стали с конусностью в пределах 9÷22° и полировкой внутренней поверхности Ra в пределах 0,01÷0,16 мкм, сравнивают его с эталонным углом естественного откоса и проводят корректировку угла естественного откоса шихты, изменяя гранулометрический состав компонентов шихты. Каждый компонент предварительно рассеивают и определяют угол естественного откоса каждой фракции всех компонентов, при угле естественного откоса, превышающем верхний предел эталонного угла, удаляют мелкие и добавляют крупные фракции компонентов, а при угле естественного откоса меньше нижнего предела эталонного угла удаляют крупные и добавляют мелкие фракции компонентов. Устройство для определения угла естественного откоса порошковых материалов включает основание (1), средство перемещения воронки (2), выполненное в виде направляющих стоек (4) для перемещения воронки (2), кольца (5), соединенного со стойками, и средство измерения высоты подъема воронки (2), выполненное в виде измерительной шкалы 8, установленной на основании (1) и снабженной подвижной нониусной шкалой 9, соединенной с кольцом воронку (2), выполненную с конусностью в пределах 9÷22°, плоский диск (3). При этом воронка 2 и плоский диск 3 выполнены с полировкой рабочих поверхностей в пределах Ra 0,01÷0,16 мкм. Обеспечивается повышение качества шихты порошковой проволоки и повышение точности определения угла естественного откоса порошковых материалов. 2 н. и 3 з.п. ф-лы, 6 ил.

2528564
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА ИЗ КАРБИДСОДЕРЖАЩИХ СПЛАВОВ ВОЛЬФРАМОВОЙ (ВК) И ТИТАНО-ВОЛЬФРАМОВОЙ (ТК) ГРУПП

Изобретение относится к области металлургии, в частности к изделиям из карбидсодержаших твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием. Способ получения режущего инструмента из карбидсодержащих сплавов вольфрамовой (ВК) и титано-вольфрамовой (ТК) групп включает спекание карбидсодержащих сплавов при температуре 1400-1650°C и охлаждение. После спекания производят вакуумный отжиг с нагревом до температуры 1050°C-1250°C и выдержкой 1 час, а последующее охлаждение осуществляют вместе с печью в течение 4 часов. Повышается стойкость карбидсодержащих сплавов. 8 ил., 5 табл.

2528539
выдан:
опубликован: 20.09.2014
ЭЛЕКТРОД, ПРИМЕНЯЕМЫЙ ДЛЯ ПОВЕРХНОСТНОЙ ОБРАБОТКИ РАЗРЯДОМ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к порошковой металлургии, в частности к способу изготовления электрода для поверхностной обработки разрядом. Состав, включающий электропроводный смешанный материал с размером частиц менее 5 мкм, содержащий первый порошок, полученный с помощью по меньшей мере любого процесса, выбранного из группы, состоящей из метода распыления, метода восстановления и карбонильного метода, и второй порошок, полученный методом измельчения, и связующее, причем электропроводный смешанный материал содержит второй порошок с долей 10-65 вес.%, подвергают инжекционному формованию с получением сырой заготовки. Заготовку нагревают для удаления связующего и спекают при температуре и времени выдержки, необходимых для получения электрода с электрическим сопротивлением от 1×10-3 до 3×10-2 Ом см. Обеспечивается высокое качество спекания и устранение вероятности пережога. 2 н. и 7 з.п. ф-лы, 4 ил., 1 табл.

2528527
выдан:
опубликован: 20.09.2014
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛИЧЕСКОГО ИЗДЕЛИЯ ИЗ ПОРОШКОВОГО МАТЕРИАЛА ЦИКЛИЧНЫМ ПОСЛОЙНЫМ ЛАЗЕРНЫМ СИНТЕЗОМ

Изобретение относится к порошковой металлургии, в частности к изготовлению металлических изделий из порошков селективным лазерным спеканием. Наносят слой керамического порошка, проводят селективное спекание на заданных участках слоя и удаляют указанный материал из неспеченных участков. Между спеченными участками керамического слоя наносят слой порошка металла или сплава той же толщины и проводят селективное спекание на этих участках. Цикл повторяют до осуществления полного формирования изделия. При этом керамика образует при спекании оболочку формируемого изделия. После каждого спекания слоя металла или сплава проводят его расплавление и/или расплавление всего объема металла или сплава, а после полного формирования изделия и кристаллизации расплавленного металла или сплава производят удаление керамики. 15 з.п. ф-лы, 2 ил., 1 пр.

2526909
выдан:
опубликован: 27.08.2014
СПЕЧЕННАЯ ТВЕРДОСПЛАВНАЯ ДЕТАЛЬ И СПОСОБ

Изобретение относится к порошковой металлургии, в частности к получения спеченных твердосплавных деталей из градиентных твердых сплавов. Может использоваться для изготовления режущих вставок инструмента для машинообработки металла, горного инструмента или инструмента для холодной штамповки. Добавку для измельчения зерна, содержащую агент измельчения зерна и углерод и/или азот, и активатор роста зерна размещают на по меньшей мере одной части поверхности прессовки из исходного материала на основе WC, содержащего один или более твердофазных компонентов и связующее, и спекают прессовку. Добавка для измельчения зерна представляет собой карбид, смешанный карбид, карбонитрид или нитрид. Твердосплавная деталь содержит твердую фазу на основе WC и связующую фазу, причем по меньшей мере одна часть промежуточной поверхностной зоны имеет более низкое среднее содержание связующего, чем часть, находящаяся глубже в детали, и по меньшей мере одна часть верхней поверхностной зоны имеет в среднем более высокий средний размер зерна WC, чем промежуточная поверхностная зона. Твердосплавная деталь имеет по меньшей мере один максимум твердости, расположенный ниже поверхности. Обеспечивается повышение сопротивления детали разрушению при ударной нагрузке. 3 н. и 16 з.п. ф-лы, 11 ил., 6 табл., 5 пр.

2526627
выдан:
опубликован: 27.08.2014
ШАРОВОЙ ЗАТВОР ИЗ КЕРМЕТА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к порошковой металлургии, в частности к изготовлению шарового затвора из кермета на основе карбида титана. Структура кермета шарового затвора состоит из чередующихся зон с неперывной металлической матрицей и равномерно расположенными в ней изолированными друг от друга карбидными зернами и зон с напрерывной металлической матрицей и равномерно расположенными в ней карбидными зернами, образующими непрерывный каркас. Содержание металлической матрицы в кермете составляет 25-70 об.%. При получении шарового затвора форму с пористым карбидным полуфабрикатом после спекания не извлекают из печи подогрева и поддерживают его температуру выше температуры ликвидуса пропитывающего металла. Пропитывающий металл расплавляют в тигле, размещенном в той же камере, заливают в форму до соприкосновения с карбидным полуфабрикатом и поддерживают необходимую температуру в течение времени, обеспечивающего полную инфильтрацию расплавом металла и направленную кристаллизацию металла в поровом пространстве полуфабриката. Обеспечивается повышение качества изделия из кермета за счет формирования нескольких зон с разной структурой. 2 н.п. ф-лы, 6 ил., 4 пр.

2525965
выдан:
опубликован: 20.08.2014
УСТРОЙСТВО ДЛЯ ИЗВЛЕЧЕНИЯ ЭЛЕМЕНТОВ ИЗ ОКСИДНЫХ РУД

Изобретение относится к металлургии. Устройство для извлечения элементов из оксидных руд в виде порошка содержит плазмотрон, подающий канал, реакционный канал, фильтр и емкость для сбора порошка. Кроме того, устройство снабжено емкостью для загрузки сырья в виде смеси нанопорошков угля и оксидной руды, форсункой для регулирования скорости подачи сырья из емкости в реакционный канал, расположенной в подающем канале, каналом для теплоносителя, расположенным с охватом реакционного канала и связанным с технологическим контуром, содержащим теплообменник, тепловую турбину и электрогенератор. Упомянутый технологический контур выполнен с возможностью утилизации тепловой энергии в виде разности между энергией, выделяющейся при окислении углерода, и энергией, необходимой для разложения оксидов, в электрическую энергию. Реакционный канал выполнен с расширением по диаметру от входа в него сырья и розжига сырья плазмотроном до зоны образования газов разложения оксидов и окисления углерода, а после реакционного канала установлен многосекционный фильтр. Обеспечивается извлечение элементов из оксидных руд в виде порошка, а также более полное использование разности тепловыделения при окислении углерода и разложении оксидов. 1 ил., 3 табл.

2525881
выдан:
опубликован: 20.08.2014
СПОСОБ СТАБИЛИЗАЦИИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ИЗДЕЛИЙ ИЗ ТВЕРДЫХ СПЛАВОВ

Изобретение относится к металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием. Твердосплавное изделие облучают быстрыми электронами при флюенсах, меньших 1·1012 эл/см2, и проводят стабилизирующий отжиг в интервале температур от 200 до 350 °С. Обеспечивается стабилизация механических характеристик. 5 ил.

2525873
выдан:
опубликован: 20.08.2014
СПОСОБ ПРИГОТОВЛЕНИЯ ТВЕРДОСПЛАВНОЙ ШИХТЫ С УПРОЧНЯЮЩИМИ ЧАСТИЦАМИ НАНОРАЗМЕРА

Изобретение относится к порошковой металлургии, в частности к приготовлению шихты для формирования матрицы алмазного инструмента из твердосплавной порошковой смеси с упрочняющими наночастицами из сверхтвердых материалов. В растворитель пластификатора последовательно вводят упрочняющие сверхтвердые частицы наноразмера и вещества пластификатора. Из полученной суспензии при температуре на 30-50°C ниже температуры разложения вещества пластификатора выпаривают избыточное количество растворителя так, чтобы ее количество по отношению к веществу пластификатора составляло не более 10%, после чего пластификатор вводят в твердосплавную порошковую смесь. Смешивание сверхтвердых частиц наноразмера с растворителем и выпаривание избыточного количества растворителя из суспензии проводят в кавитационном поле ультразвука. Обеспечивается получение однородной по объему шихты и однородность износостойкости матрицы инструмента.

2525192
выдан:
опубликован: 10.08.2014
УСТРОЙСТВО И СПОСОБ ГРАНУЛИРОВАНИЯ РАСПЛАВЛЕННОГО МЕТАЛЛА

Изобретение относится к порошковой металлургии, в частности к получению металлических порошков путем гранулирования расплава. Устройство для гранулирования состоит в основном из круглой водяной емкости, в которую несколькими направленными горизонтально соплами, расположенными на разных уровнях относительно дна емкости со смещением в окружном направлении, в тангенциальном направлении подается вода. Находящаяся в емкости вода приводится во вращение, а ее поверхность принимает параболическую форму. Первое водяное сопло расположено в зоне водной поверхности и формирует находящуюся у водной поверхности водяную струю или водяной веер. Для гранулирования расплавленного металла его непрерывно заливают из тигля в водяной веер, формируемый первым водяным соплом. При этом первое водяное сопло расположено выше уровня водослива, положение которого в окружном направлении емкости выбрано таким, что угловое смещение между первым соплом и водосливом составляет по меньшей мере 90°. Процесс грануляции протекает без выброса пара и гранулированных частиц. 2 н. и 13 з.п. ф-лы, 4 ил., 1 пр.

2524873
выдан:
опубликован: 10.08.2014
СПОСОБ ПОЛУЧЕНИЯ ДИФФУЗИОННО-ЛЕГИРОВАННОГО ПОРОШКА ЖЕЛЕЗА ИЛИ ПОРОШКА НА ОСНОВЕ ЖЕЛЕЗА, ДИФФУЗИОННО-ЛЕГИРОВАННЫЙ ПОРОШОК, КОМПОЗИЦИЯ, ВКЛЮЧАЮЩАЯ ДИФФУЗИОННО-ЛЕГИРОВАННЫЙ ПОРОШОК, И ПРЕССОВАННАЯ И СПЕЧЕННАЯ ДЕТАЛЬ, ИЗГОТОВЛЕННАЯ ИЗ УПОМЯНУТОЙ КОМПОЗИЦИИ

Изобретение относится к порошковой металлургии, в частности к порошковой композиции на основе железа, и способу получения диффузионно-легированного порошка. Диффузионно-легированный порошок получен смешиванием порошка железа или на основе железа с частицами легирующего порошка, содержащими медь и никель, и нагрев смеси порошков в неокислительной или восстановительной атмосфере до температуры 500-1000°С в течение 10-120 минут для связывания частиц легирующего порошка с поверхностью базового порошка. Гранулометрический состав легирующего порошка из меди и никеля такой, что D50 составляет менее 15 мкм. Общее содержание меди и никеля составляет максимально 20 вес.%, при содержании меди более 4 вес.% и соотношении между медью и никелем от 9/1 до 3/1. Спеченные детали имеют минимальное изменение размеров в процессе спекания. 5 н. и 10 з.п. ф-лы, 3 ил., 6 табл., 2 пр.

2524510
выдан:
опубликован: 27.07.2014
СПОСОБ ПОЛУЧЕНИЯ СУСПЕНЗИИ ВЫСОКОДИСПЕРСНЫХ ЧАСТИЦ МЕТАЛЛОВ И ИХ СОЕДИНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к получению суспензии металлических порошков и может быть использовано для дезагрегации в жидкой среде наноразмерных порошков металлов и их соединений. Может использоваться для нанесения равномерного слоя наноразмерных частиц на волокнистую или зернистую подложку для получения тонкого равномерного пористого покрытия. Проводят ультразвуковое диспергирование в дисперсионной среде порошка в виде агрегатов наноразмерных частиц и механическое перемешивание со скоростью 250-1000 об/мин. Механическое перемешивание и ультразвуковое диспергирование осуществляют последовательно при перемещении суспензии по замкнутому гидравлическому контуру со скоростью 0,06-0,15 м/с. Устройство содержит быстроходную мешалку, установленную в емкости-смесителе в виде круглодонного бака, ультразвуковую проточную камеру и средство для перемещения суспензии по замкнутому гидравлическому контуру. Емкость-смеситель и ультразвуковая проточная камера последовательно соединены между собой трубопроводами. Обеспечивается получение седиментационно-устойчивой суспензии, содержащей высокодисперсные частицы. 2 н. и 11 з.п. ф-лы, 3 ил., 3 пр.

2523643
выдан:
опубликован: 20.07.2014
ОГНЕСТОЙКАЯ СТРОИТЕЛЬНАЯ ПЛИТА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к огнестойким строительным плитам и способу их производства, а именно к огнестойким плитам из ваты, полученной путем переплетения тонких металлических нитей из ненужных консервных банок, жести, железа, цветных металлов и т.д. Изобретение заключается в изготовлении огнестойкой строительной плиты из ваты, полученной путем переплетения тонких металлических нитей из ненужных консервных банок, жести, железа, цветных металлов и т.д. Изобретение делает возможным вторичное использование материалов, максимально увеличивает огнестойкие, звукоизолирующие и теплоизолирующие свойства плит, повышает долю вторичного использования материалов и снижает количество отходов при демонтаже зданий, и таким образом способствует развитию экологически чистого производства. 3 н. и 6 з.п. ф-лы, 15 ил.

2523268
выдан:
опубликован: 20.07.2014
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ СИЛЬНОТОЧНЫХ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ И СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА

Изобретение относится к порошковой металлургии, в частности к производству графито-медных материалов для сильноточных электрических контактов. Шихта содержит, мас.%: частицы меди 20-85, частицы гидрида титана 1-10 и частицы графита - остальное. Для получения заготовки материала шихту подвергают спеканию путем пропускания импульсов электрического тока плотностью 200-500 А/мм2 с одновременным одноосным обжатием. Обеспечивается получение высокоплотного материала с необходимым удельным электрическим сопротивлением, а также надежной смачиваемостью медью частиц графита. 2 н. и 4 з.п. ф-лы, 1 табл.

2523156
выдан:
опубликован: 20.07.2014
СПОСОБ ПОЛУЧЕНИЯ ОТЛИВОК СПЛАВОВ НА ОСНОВЕ ГАММА АЛЮМИНИДА ТИТАНА

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей. Способ получения литого сплава на основе гамма алюминида титана для фасонных отливок включает получение смеси порошков, формирование из нее брикета и проведение самораспространяющегося высокотемпературного синтеза. Получают смесь порошков из чистых металлов, содержащую титан, алюминий, ниобий и молибден в количестве, мол.%: алюминий 40-44, ниобий 3-5, молибден 0,6-1,4, титан - остальное. Брикет формируют с относительной плотностью 50-85 % и подвергают его термовакуумной обработке при температуре 550-650°C в течение 10-40 мин, скорости нагрева 5-40°C/мин и давлении 10-1-10 -3 Па, а СВС проводят при начальной температуре 560-650°C. Получают отливки заданной конфигурации с высоким уровнем механических свойств при повышенных температурах. 2 ил., 2 табл., 2 пр.

2523049
выдан:
опубликован: 20.07.2014
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ НИТРИДА УРАНА

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при остаточном давлении 10 -1÷10-2 мм рт.ст. и температуре 250÷300°С, с последующим напуском водорода до давления 750÷800 мм рт.ст. Гидрирование урана проводят в течение времени, которое определяют по заданной формуле. Реакционную емкость с полученным порошком гидрида урана подвергают повторному вакуумированию при температуре, не превышающей 220°С, до достижения остаточного давления в реакционной емкости 10-1÷10-2 мм рт.ст. Азотирование полученного порошка гидрида урана осуществляют в протоке азота при температуре 250÷300°С, при этом регулируют давление в реакционной емкости от 1 до 800 мм рт.ст. в зависимости от изменения площади реакционной поверхности порошка гидрида урана. Обеспечивается увеличение дисперсности порошков нитрида урана и снижение длительности процесса их получения. 1 з.п. ф-лы, 1 табл., 1 пр.

2522814
выдан:
опубликован: 20.07.2014
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО ПОРОШКА НИКЕЛИДА ТИТАНА

Изобретение относится к порошковой металлургии, в частности к получению пористого порошка никелида титана. Может использоваться в медицине для изготовления стоматологических имплантов. Порошки никеля и титана смешивают в эквиатомных количествах и прессуют брикеты. Нагревают брикеты в вакууме со скоростью нагрева не выше 279 К/мин до достижения температуры 950-1100 К, выдерживают при этой температуре в течение 2-3 часов и охлаждают с печью. Полученный спек размалывают в шаровой мельнице на закритической скорости в среде изопропанола в течение 40-48 часов и высушивают. Обеспечивается получение порошка, состоящего из фрактально-структурированных частиц с открытой пористостью. 3 ил., 2 пр.

2522257
выдан:
опубликован: 10.07.2014
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ НИОБИЯ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы. Смесь порошков ниобия и алюминия чистотой не менее 98% и долей алюминия от 1,5 до 45 мас.% подвергают механической обработке в планетарной шаровой мельнице при ускорении шаров от 100 до 600 м/с2 продолжительностью от 0,5 до 20 минут. Компактирование кручением под квазигидростатическим давлением на наковальнях Бриджмена осуществляют при температуре от 10 до 100°С, давлении от 2 до 10 ГПа и относительном повороте наковален при кручении до достижения сдвиговой деформации 50. Полученный композит со слоистой структурой характеризуется наномасштабным размером зерен и слоев, повышенной твердостью и большой удельной площадью межфазных границ. 3 ил., 1 пр.

2521945
выдан:
опубликован: 10.07.2014
ТВЕРДОСПЛАВНОЕ ТЕЛО

Изобретение относится к порошковой металлургии, в частности к получению твердосплавного тела из твердого сплава, содержащего зерна карбида вольфрама и металлическое связующее, содержащее кобальт с определенной концентрацией растворенного в нем вольфрама. Твердосплавное тело имеет граничащие друг с другом область поверхности и внутреннюю область, при этом средняя доля связующего во внутренней области больше, чем в области поверхности. Средняя концентрация углерода в связующем в области поверхности выше, чем во внутренней области, при этом твердосплавное тело не содержит эта-фазу и свободный углерод. Концентрация вольфрама, растворенного в связующем в области поверхности меньше, чем во внутренней области, и определяется как(16,1- В)/0,275, где В - частное от деления величины магнитного момента твердого сплава в области твердосплавного тела на массовую долю связующего в этой области. Твердосплавное тело получено путем формования неспеченной заготовки, содержащей зерна карбида вольфрама, распределенные в содержащем кобальт связующем, предварительного спекания при 1000-1280°С в течение 1-3 часов, термообработки в науглероживающей среде и жидкофазного спекания при 1320-1400°С. Обеспечивается получение материала с градиентом свойств, имеющего высокую износостойкость и ударную вязкость в области поверхности. 2 н. и 9 з.п. ф-лы, 4 ил., 1 табл., 1 пр.

2521937
выдан:
опубликован: 10.07.2014
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА Al-Al2O3

Способ получения композиционного материала Аl-Аl 2O3 относится к технологии композиционных материалов - керметов и может быть использовано для получения уплотнительных элементов, применяемых для плотного сопряжения деталей и конструкций высокотемпературных энергетических установок. В соответствии с заявленным способом алюминиевый порошок (марки ПАП-2) предварительно термообрабатывали на воздухе для удаления стеарина с поверхности его частиц. Далее его гранулировали путем механической обработки в планетарной мельнице в течение 15-180 минут при отношении массы порошка к массе твердосплавных сферических тел от 1:20 до 1:25, проводили термообработку засыпки из гранул в вакууме при температуре 500-600°С в течение 45-60 минут с последующим прессованием заготовки при давлении 400-600 МПа. Полученную заготовку нагревали воздушным теплоносителем до температуры 550-600°С для инициирования процесса самораспространяющегося высокотемпературного синтеза (СВС) с последующей изотермической выдержкой в течение 30-60 минут и охлаждением нагретого изделия на воздухе при комнатной температуре. Способ позволяет получить материал с высокой способностью к пластической деформации при сохранении высокой прочности. 3 з.п. ф-лы, 3 пр., 1 табл.

2521009
выдан:
опубликован: 27.06.2014
СПОСОБ ФОРМИРОВАНИЯ БУРИЛЬНОГО ИНСТРУМЕНТА С ИСПОЛЬЗОВАНИЕМ ГЕОМЕТРИЧЕСКОЙ КОМПЕНСАЦИИ И СФОРМИРОВАННЫЙ ПОСРЕДСТВОМ НЕГО ИНСТРУМЕНТ

Группа изобретений относится к области бурового инструмента и способам его изготовления. Технический результат обеспечивается геометрической компенсацией, используемой для улучшения точности, с которой элементы могут размещаться на буровых долотах, формируемых с использованием прессования частиц и спекания. При осуществлении способа формирования корпуса долота для роторного бурения прогнозируют ошибку расположения, которую будет иметь по меньшей мере один элемент из группы элементов на не полностью спеченном корпусе долота, при спекании не полностью спеченного корпуса долота до заданной конечной плотности, формируют по меньшей мере один элемент из группы элементов на не полностью спеченном корпусе долота в месте расположения, по меньшей мере частично определенном по прогнозируемой ошибке расположения, которую будет иметь по меньшей мере один из группы элементов, и спекают не полностью спеченный корпус долота до требуемой конечной плотности. Корпус долота для роторного бурения, не полностью спеченный, имеет профиль режущей поверхности с формой, отличающейся от заданной формы проектного профиля режущей поверхности полностью спеченного корпуса долота, формируемого из не полностью спеченного корпуса долота. 2 н.з. и 18 з.п. ф-лы, 14 ил.

2520313
выдан:
опубликован: 20.06.2014
Наверх