способ ультразвуковой обработки сварных металлоконструкций
Классы МПК: | C21D1/04 с одновременным использованием ультразвука, магнитных или электрических полей C21D9/50 для сварных швов C21D7/06 путем наклепа и тп |
Автор(ы): | Рудецкий Александр Васильевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU) |
Приоритеты: |
подача заявки:
2010-04-06 публикация патента:
10.04.2012 |
Изобретение может быть использовано в различных отраслях машиностроения, например строительстве мостов, судостроении, нефтяной и газовой промышленности, для ультразвуковой релаксационно-упрочняющей обработки металлоконструкций, например околошовных зон и швов сварных соединений и других поверхностей. Способ ультразвуковой релаксационно-упрочняющей обработки сварных швов включает статическое нагружение сварного шва и ультразвуковое воздействие на сварной шов с помощью ультразвукового инструмента-волновода посредством акустической системы, при этом ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний. Технический результат заключается в снятии остаточных напряжений в сварных соединениях. 1 пр., 1 табл., 2 ил.


Формула изобретения
Способ ультразвуковой релаксационно-упрочняющей обработки сварных швов, включающий статическое нагружение сварного шва и ультразвуковое воздействие на сварной шов с помощью ультразвукового инструмента-волновода посредством акустической системы, отличающийся тем, что ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний.
Описание изобретения к патенту
Изобретение относится к области ультразвуковой релаксационно-упрочняющей, сопровождающейся пластическим деформированием и озвучиванием обрабатываемой поверхности ультразвуком, и пассивирующей обработки, и может быть использовано в различных отраслях машиностроения, например строительстве мостов, судостроении, нефтяной и газовой промышленности, для ультразвуковой релаксационно-упрочняющей обработки металлоконструкций, например околошовных зон и швов сварных соединений и других поверхностей.
Как известно, в основе ультразвуковой виброударной обработки твердых тел лежит ряд сложных физических явлений, которые можно разделить на две группы:
1) явления, связанные с локальным воздействием вибрирующего инструмента на обрабатываемую поверхность: пластическое деформирование или хрупкое разрушение поверхностных слоев, изменение сил трения на границе «инструмент - изделие», выделение тепла и повышение температуры на границе двух колеблющихся деталей - граничная диссипация (рассеяние механической энергии и переход ее в тепловую);
2) явления в объеме обрабатываемой детали, связанные с действием ультразвуковых деформаций (это явление называют звуковой деформацией), вызванных ультразвуковыми волнами: ускорение диффузии и диффузионных превращений, увеличение скорости ползучести или релаксации напряжений, снижение сопротивления пластическому деформированию, акустические потери в материале - объемная диссипация энергии, и др.
Известен способ ультразвуковой обработки (см. а.с. № 683873 СССР, МПК2 B23K 28/00, опубл. 05.09.79, БИ № 33), в котором с целью повышения сопротивляемости возникновению холодных трещин обработку выполняют по следующему режиму: статическая нагрузка 40 50 кгс; амплитуда колебаний торца волновода на холостом ходу 60
65 мкм; скорость обработки 18
20 м/час; частота колебаний 18
22 кГц; в качестве источника ультразвуковых колебаний использовался магнитострикционный преобразователь (акустическая система), принятый за прототип.
Вышеописанный способ, принятый за прототип, позволяет очистить сварочный шов и околошовную зону от окалины; сформировать нужный радиус сопряжения сварного соединения с одновременным устранением сварочных дефектов типа подрезов; повысить циклическую прочность сварного соединения за счет снижения величины и концентрации механических напряжений в шве и околошовной зоне; создать на поверхности шва и околошовной области упрочненную зону с повышенной устойчивостью к образованию трещин и коррозии. Эффективность технологии характеризуется локальным воздействием вирирующего инструмента на обрабатываемую поверхность путем создания поверхностного наклепа методом ультразвуковой виброударной обработки.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что для снижения технологических остаточных напряжений практически не используются явления, связанные с действием ультразвуковых деформаций в объеме обрабатываемой детали, вызванных ультразвуковыми волнами.
Сущность изобретения заключается в следующем.
Для снятия остаточных напряжений в металлоконструкциях на пьезокерамическую акустическую систему подают синусоидальные частотно-модулированные ультразвуковые колебания. При этом не наблюдается скачкообразного изменения амплитуды ультразвукового сигнала, в силу этого в поверхностном слое образуются равномерно изменяющиеся остаточные напряжения, и из-за уменьшения коэффициента затухания синусоидального сигнала обеспечивается увеличение степени наклепа обрабатываемой поверхности детали, а также повышается действие ультразвуковых деформаций в объеме обрабатываемой детали, что положительно сказывается на перераспределении остаточных напряжений в объеме обрабатываемой детали.
Технический результат - повышение эффективности снятия остаточных напряжений в неразъемных соединения металлоконструкций; улучшение эксплуатационных характеристик изделий - усталостной прочности, контактной жесткости, износостойкости, коррозионной стойкости, надежности сварного соединения.
Указанный технический результат при осуществлении изобретения достигается тем, что заявляемый способ включает статическое нагружение сварного шва и ультразвуковое воздействие на сварной шов с помощью ультразвукового инструмента-волновода посредством акустической системы.
Особенность заключается в том, что ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний с частотой 20 кГц. Это приводит к значительному снятию остаточных напряжений в сварных соединениях металлов. Режимы обработки, включающие статическое нагружение ультразвукового инструмента, скорость обработки и амплитуда колебаний торца волновода, назначаются в зависимости от оптимального для данных условий обработки снятия остаточных напряжений, определяемого экспериментально для каждого конкретного случая, обусловленного маркой (марками) обрабатываемого материала и его толщиной, параметрами электрического тока и маркой электрода (для электродуговой сварки), параметрами шва и др.
Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата.
На фиг.1 - схема устройства, реализующая предлагаемый способ; на фиг.2 - иллюстрация ультразвуковых сигналов: а) без модуляции; б) частотная модуляция.
Инструментом для обработки (фиг.1) служит пьезокерамический преобразователь 1 с коническим волноводом 2, далее поз.1 и 2 объединены под общим названием «пьезокерамическая акустическая система», перемещаемая по сварному шву и прижимаемая к нему статической нагрузкой Pcm.
Способ ультразвуковой обработки сварных металлоконструкций заключается в том, что ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний (фиг.2,б) с частотой 20 кГц от ультразвукового генератора (условно не показан) через кабель 3 (см. фиг.1). А режимы обработки - статическая нагрузка Pcm, скорость обработки и время обработки определяются экспериментально, для каждого конкретного случая, обусловленного маркой (марками) обрабатываемого материала и его толщиной, параметрами электрического тока и маркой электрода (для электродуговой сварки), параметрами шва и др.
Вследствие введения энергии синусоидальных частотно-модулированных ультразвуковых колебаний (см. фиг.2,б) в сочетании с оптимальными режимами обработки ускоряются процессы релаксации остаточных сварочных и технологических напряжений не только в области шва и околошовной области, но и во всем объеме обрабатываемой детали.
Пример, В экспериментальных исследованиях использовались образцы в виде пластин прямоугольной формы 4 (см. фиг.1) из конструкционной углеродистой качественной стали 20 толщиной 10 мм, сваренных между собой при помощи электродуговой сварки.
Амплитуда колебаний насадка 5 15 мкм, рабочая частота 20 кГц, номинальная мощность ультразвукового генератора 50 Вт, продольная скорость стола станка 3,1 м/мин, статическая сила прижима пьезокерамической акустической системы 10 Н.
Параметры ультразвукового сигнала вырабатываемого ультразвуковым генератором (при включенной в цепь пьезокерамической акустической системе) (см. фиг.2):
Вид ультразвукового сигнала | Первый импульс 5 | Второй импульс 6 | Частота следования импульсов | |||
Амплитуда U1, В | Частота | Амплитуда U2, В | Глубина модуляции, % | Частота | ||
Без модуляции (см. фиг.2,а) | 0 | 18,6 | - | - | - | - |
Частотная модуляция (см. фиг.2,б) | 0 | 20,0 | 0 | 25 | 12,5 | 1 |
В результате проведенных исследований установлено, что использование энергии синусоидальных частотно-модулированных ультразвуковых колебаний (см. фиг.2,б) позволяет снизить остаточные напряжения на 27 29%, при этом ультразвуковые колебания без модуляции (см. фиг.2,а) позволяют снизить остаточные напряжения на 20
22%.
Класс C21D1/04 с одновременным использованием ультразвука, магнитных или электрических полей
Класс C21D9/50 для сварных швов
Класс C21D7/06 путем наклепа и тп