способ формирования поверхности синтезированных наночастиц

Классы МПК:B22F9/24 из жидких металлических соединений, например растворов
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):,
Патентообладатель(и):Гребенников Евгений Петрович (RU),
Адамов Григорий Евгеньевич (RU)
Приоритеты:
подача заявки:
2007-12-18
публикация патента:

Изобретение относится к нанотехнологии и может быть использовано для эффективного изменения физико-химических свойств образованной на поверхности наночастиц неорганической природы лигандной оболочки. Для получения раствора наночастиц с лигандной оболочкой в раствор соли металла в воде или органическом растворителе последовательно вводят раствор стабилизатора, содержащего лиганды, и раствор восстановителя. После изменяют знак заряда лигандной оболочки путем односторонней диффузии молекул вещества, изменяющего знак заряда лигандной оболочки через полупроницаемую мембрану, в раствор наночастиц. При этом используют мембрану, имеющую размер пор меньше размера наночастиц, но больше размера молекул вещества, изменяющего знак заряда лигандной оболочки. В качестве стабилизатора используют вещество, размер молекул которого меньше размера пор полупроницаемой мембраны. Обеспечивается получение наночастиц с лигандной оболочкой с заданными свойствами. 1 з.п. ф-лы.

Формула изобретения

1. Способ формирования поверхности наночастиц при синтезировании, включающий последовательное введение в раствор соли металла в воде или органическом растворителе раствора стабилизатора, содержащего лиганды, и раствора восстановителя и получение раствора наночастиц с лигандной оболочкой, отличающийся тем, что после получения наночастиц с лигандной оболочкой изменяют знак заряда лигандной оболочки путем односторонней диффузии молекул вещества, изменяющего знак заряда лигандной оболочки через полупроницаемую мембрану, в раствор наночастиц, при этом используют мембрану, имеющую размер пор меньше размера наночастиц, но больше размера молекул вещества, изменяющего знак заряда лигандной оболочки.

2. Способ по п.1, отличающийся тем, что в качестве стабилизатора используют вещество, размер молекул которого меньше размера пор полупроницаемой мембраны.

Описание изобретения к патенту

Изобретение относится к области нанотехнологии и может быть использовано для эффективного изменения физико-химических свойств образованной на поверхности наночастиц неорганической природы лигандной оболочки.

Из уровня техники известен способ формирования поверхности синтезированных наночастиц, включающий синтезирование наночастиц путем последовательного введения в раствор соли металла в воде или органическом растворителе раствора стабилизатора и раствора восстановителя (WO 2006025627 A1, B62B 3/00, 2006). Однако в ряде случаев не представляется возможным получить требуемые свойства образованной на поверхности наночастиц лигандной оболочки непосредственно при введении стабилизатора.

Изобретение направлено на создание эффективного способа формирования поверхности синтезированных наночастиц неорганической природы (металлических или полупроводноковых) с заданными функциональными свойствами образованной на поверхности наночастиц лигандной оболочки.

Решение поставленной задачи обеспечивается тем, что в способе формирования поверхности синтезированных наночастиц, включающем синтезирование наночастиц путем последовательного введения в раствор соли металла в воде или органическом растворителе раствора стабилизатора и раствора восстановителя, согласно изобретению производят функционализацию образованной при синтезировании лигандной оболочки путем односторонней диффузии молекул раствора функционализирующего вещества в полученный раствор наночастиц через полупроницаемую перегородку - мембрану, отделяющую раствор функционализирующего вещества от раствора наночастиц, размер пор которой меньше размера наночастиц, но больше размера молекул функционализирующего вещества, которые формируют - функционализируют лигандную оболочку.

Кроме того, в качестве стабилизатора используют вещество, размер молекул которого меньше размера пор полупроницаемой перегородки - мембраны.

Заявленная функционализация образованной при синтезировании лигандной оболочки путем односторонней диффузии молекул раствора функционализирующего вещества в полученный раствор наночастиц через полупроницаемую перегородку - мембрану, отделяющую раствор функционализирующего вещества от раствора наночастиц, обеспечивает формирование на поверхности наночастиц лигандной оболочки из молекул функционализирующего вещества с заданными функциональными свойствами, концентрация которых равна концентрации в исходном растворе функционализирующего вещества, при этом происходит значительное разбавление нежелательных примесей. Кроме того, при выборе в качестве стабилизатора вещества, размер молекул которого меньше размера пор полупроницаемой перегородки - мембраны, обеспечивается возможность замены образованной лигандной оболочки из стабилизатора на лигандную оболочку из функционализирующего вещества.

Заявленный способ формирования поверхности синтезированных наночастиц осуществляется следующим образом.

Пример 1.

На первом этапе изготовляют наночастицы серебра, стабилизированные 11-меркаптоундекановой кислотой. Для этого в 100 мл 1,34·10-3 M раствора нитрата серебра вводят 10 мл 5,56·10-6 М 11-меркаптоундекановой кислоты, линейный определяющий размер молекул которой ~1,3÷1,4 нм, и тщательно взбалтывают. Затем к раствору при интенсивном перемешивании на магнитной мешалке добавляют порциями по 30 мкл с интервалом 3 минуты 120 мкл 0,1 М раствора восстановителя - боргидрида натрия. После добавление первой порции раствора боргидрида натрия почти сразу суспензия приобретает ярко-желтую окраску, интенсивность которой росла с добавлением новых порций восстановителя. Окраска полученной суспензии была интенсивно ярко-желтой без признаков выпадения осадка. Синтезированные наночастицы серебра в электрическом поле двигаются к положительно заряженному электроду, что говорит об их отрицательном заряде, возникающем за счет карбоксильных групп меркаптоундекановой кислоты.

На втором этапе проводят диффузию фунционализирующего вещества - лизина, определяющий размер молекул которого ~0,7÷0,9 нм, в суспензию наночастиц через полупроницаемую мембрану, определяющий размер - диаметр пор которой ~1,5÷2,0 нм. Для этого 5 мл суспензии наночастиц помещают в кювету, отделенную полупроницаемой мембраной от 1 л 0,02 М раствора лизина. По окончании процессов диффузии (спустя 2 суток) при наложении электрического поля наночастицы серебра начинают двигаться к отрицательно заряженному электроду, что подтверждает изменение знака заряда на положительный и замене на поверхности наночастиц исходного стабилизирующего вещества лигандной оболочки 11-меркаптоундекановой кислоты на молекулы фунционализирующего вещества - лизина.

Пример 2.

На первом этапе приготовляют наночастицы серебра, стабилизированные поливиниловым спиртом. Для этого в 100 мл 1,34·10 -3 M раствора нитрата серебра вводят 10 мл 1% М раствора поливинилового спирта, определяющий размер молекул которого ~10÷15 нм, и тщательно взбалтывают. Затем к раствору при интенсивном перемешивании на магнитной мешалке добавляют порциями по 30 мкл с интервалом 3 минуты 120 мкл 0,1 М раствора восстановителя - боргидрида натрия. После добавление первой порции раствора боргидрида натрия почти сразу суспензия приобретает оранжево-желтую окраску, интенсивность которой возрастает с добавлением новых порций восстановителя. Окраска полученной суспензии была интенсивно оранжево-желтой без заметных признаков выпадения осадка. Синтезированные наночастицы серебра в электрическом поле практически не двигаются, так как поливиниловый спирт является слабо диссоциирующим веществом.

На втором этапе проводят диффузию фунционализирующего вещества - лизина, определяющий размер молекул которого ~0,7÷0,9 нм, в суспензию наночастиц через полупроницаемую мембрану, определяющий размер пор которой ~1,5÷2,0 нм. Для этого 5 мл суспензии наночастиц помещают в кювету, отделенную полупроницаемой мембраной от 1 л 0,02 М раствора лизина. По окончании процессов диффузии (спустя 2 суток) при наложении электрического поля наночастицы серебра начинают двигаться к отрицательно заряженному электроду, что свидетельствует о замене на поверхности наночастиц исходного стабилизирующего слабо диссоциирующего вещества поливинилового спирта на положительно заряженные молекулы фунционализирующего вещества - лизина. При этом происходит разбавление поливинилового спирта, молекулы которого остаются в растворе - суспензии наночастиц в кювете.

Класс B22F9/24 из жидких металлических соединений, например растворов

способ получения модифицированных наночастиц железа -  патент 2513332 (20.04.2014)
способ получения наночастиц металлов -  патент 2511202 (10.04.2014)
способ получения наночастиц серебра в полимерных матрицах при лазерном облучении -  патент 2510310 (27.03.2014)
способ получения мезопористого наноразмерного порошка диоксида церия (варианты) -  патент 2506228 (10.02.2014)
способ получения нанопорошков оксида цинка с поверхностным модифицированием для использования в строительных герметиках -  патент 2505379 (27.01.2014)
выделяемые и передиспергируемые наночастицы переходных металлов, их получение и применение в качестве ик-излучателей -  патент 2494838 (10.10.2013)
способ получения катализатора для изотопного обмена протия-дейтерия -  патент 2490061 (20.08.2013)
способ получения порошкового препарата наночастиц благородных металлов -  патент 2489231 (10.08.2013)
способ получения наноразмерных порошков твердого раствора железо-никель -  патент 2486033 (27.06.2013)
катод электролизера для получения металлических порошков -  патент 2483143 (27.05.2013)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх