ферритно-аустенитный сплав и способ изготовления труб из него

Классы МПК:C22C38/44 с молибденом или вольфрамом
C21D8/02 при изготовлении плит или лент
Автор(ы):
Патентообладатель(и):САНДВИК АБ (пабл) (SE)
Приоритеты:
подача заявки:
2000-06-13
публикация патента:

Изобретение относится к применению нержавеющей стали для изготовления труб для разработки морских нефтяных и газовых месторождений. Заявлено применение ферритно-аустенитного сплава, содержащего в вес.%: углерод до 0,05; кремний до 0,8; марганец 0,30-1,5; хром 28,0-30,0; никель 5,80-7,40; молибден 2,00-2,50; азот 0,30-0,40; медь до 1,0; вольфрам до 2,0; сера до 0,010; железо - остальное. При этом 30-70 об.% сплава составляет феррит и остальное - аустенит. Сплав применяют для изготовления труб шлангокабеля для прокладки по морскому дну при разработке нефтяных и газовых месторождений. Предел текучести сплава при растяжении - по меньшей мере 750-850 МПа, а относительное удлинение - по меньшей мере 25%. Изготовление бесшовных труб осуществляют экструзией с последующей холодной прокаткой и отжигом при температуре 1040-1080°С в течение 3-10 минут с закалкой в воде. Трубы сваривают встык и наматывают на барабан. Техническим результатом изобретения является снижение веса шлангокабеля путем снижения толщины его стенок за счет более высокой прочности и коррозионной стойкости стали 4 з.п. ф-лы, 2 ил., 8 табл.

ферритно-аустенитный сплав и способ изготовления труб из него, патент № 2247171

ферритно-аустенитный сплав и способ изготовления труб из него, патент № 2247171 ферритно-аустенитный сплав и способ изготовления труб из него, патент № 2247171

Формула изобретения

1. Применение ферритно-аустенитного сплава, содержащего, вес.%:

Углерод До 0,05

Кремний До 0,8

Марганец 0,30-1,5

Хром 28,0 -30,0

Никель 5,80-7,40

Молибден 2,00-2,50

Азот 0,30-0,40

Медь До 1,0

Вольфрам До 2,0

Сера До 0,010

Железо Остальное

при этом 30-70 об.% составляет феррит и остальное - аустенит, для изготовления труб шлангокабеля для прокладки по морскому дну при разработке нефтяных и газовых месторождений.

2. Применение по п.1, характеризующееся тем, что при изготовлении бесшовных труб предел текучести сплава при растяжении составляет по меньшей мере 750 МПа, а относительное удлинение составляет по меньшей мере 25%.

3. Применение по п.1, характеризующееся тем, что при изготовлении бесшовных труб предел текучести сплава при растяжении составляет по меньшей мере 850 МПа, а относительное удлинение составляет по меньшей мере 25%.

4. Применение по п.1, характеризующееся тем, что изготовление бесшовных труб осуществляют при помощи экструзии с последующей холодной прокаткой и отжигом при температуре 1040-1080°С в течение 3-10 мин с последующей закалкой в воде.

5. Применение по п.1, характеризующееся тем, что изготовленные трубы сваривают встык друг с другом и наматывают на барабан.

Описание изобретения к патенту

Настоящее изобретение имеет отношение к использованию нержавеющей стали, которую можно определить как легированную ферритно-аустенитную сталь, для труб, предназначенных для прокладки по морскому дну при разработке нефтяных и газовых морских месторождений. Материал, предназначенной для такого применения трубы, должен обладать хорошими коррозионными свойствами в агрессивной хлоридной среде, хорошими механическими и физическими свойствами, хорошими усталостными свойствами, а также хорошей совместимостью с типом рабочей жидкости, которую транспортируют по трубам. Трубы для такого применения изготавливают в виде бесшовных (цельнотянутых) труб, получаемых горячей экструзией (горячим прессованием).

При добыче нефти со дна моря должны быть пробурены скважины со дна моря вглубь в месторождение нефти. На дне моря должен быть установлен блок для управления потоком нефти и для обеспечения непрерывного течения сырой нефти к таким блокам, в которых будет произведено рафинирование и переработка сырой нефти в полезные продукты или полуфабрикаты. В установленном на дне моря блоке имеются среди прочего клапаны, которые должны контролировать отбор (всасывание), давление, расход и т.п., а также соединения труб, которые дают возможность закачки химикатов в нефтяную скважину. Для закачки часто используют метиловый спирт, который предотвращает коагуляцию сырой нефти и образование нежелательных пробок в добычной трубе.

Управление клапанами или соединениями установленного на дне моря блока производят гидравлически или электрически с платформы добычного судна или другого блока, находящегося на поверхности моря или на берегу. Так называемый составной шлангокабель соединяет блок управления с блоками на дне моря. Та часть шлангокабеля, которая пролегает на дне моря, например, между двумя подводными блоками разных мест добычи, именуется статическим шлангокабелем, так как волнение моря оказывает на него относительно незначительное влияние. Та часть шлангокабеля, которая идет со дна моря на поверхность, именуется динамическим шлангокабелем, так как движения в воде и на поверхности моря оказывает на него существенное влияние. Примерами таких движений являются морские течения, перемещения платформы и добычного судна, а также волнообразные движения.

На фиг.1 показан обычный шлангокабель 1, который проложен на дне моря и идет от платформы 2, которая стоит на якорях на поверхности моря 3. В этом шлангокабеле несколько труб 4 для гидравлического и электрического управления собраны вместе с центральной трубой 5 для нагнетания химикатов, таких как метиловый спирт, в пучок труб. Шлангокабель может иметь различную конфигурацию в зависимости от потребностей установленных на дне моря блоков, однако обычно он имеет трубу большего сечения 5 по центру для закачки метилового спирта и трубы меньшего сечения вокруг нее. Часто используют шлангокабель в оплетке 6 из пластика, что позволяет сразу (без подготовки) использовать его для прокладки и ввода в эксплуатацию.

Трубы 4, 5 шлангокабеля в первую очередь должны обладать высокой коррозионной стойкостью и хорошими прочностными свойствами. Материал труб, внешняя поверхность которых окружена морской водой, должен обладать коррозионной стойкостью в морской воде, причем это свойство следует считать наиболее важным, так как морская вода является весьма коррозионной по отношению к нержавеющей стали. Более того, материал должен обладать высокой коррозионной стойкостью к различным коррозионным растворам, которые закачивают в нефтяной фонтан. Материал должен быть совместим с рабочими жидкостями для гидравлических систем, которые используют для гидравлического управления, и не должен загрязнять эти жидкости, так как загрязнение указанных жидкостей примесями может весьма негативно сказаться на служебной функции блока управления, установленного на дне моря.

Прочностные свойства материала трубы являются очень важными при ее применении в качестве трубы шлангокабеля. Так как глубина моря в месте добычи нефти является значительной, то динамическая часть шлангокабеля обычно является длинной и поэтому тяжелой. Этот вес должна выдерживать платформа или плавучее добычное судно, причем если сделать шлангокабель легче, то имеющаяся чистая подъемная сила может быть использована для других целей, а не для подъема (удержания) шлангокабеля. На практике существуют два различных пути снижения веса шлангокабеля заданной конфигурации: может быть выбран более легкий материал или материал прежней плотности, но с более высокими пределом текучести и пределом прочности при растяжении. При использовании материала с более высокой прочностью могут быть использованы трубы с более тонкими стенками, за счет чего общая масса шлангокабеля может быть снижена. Чем глубже море в месте добычи, тем важнее становится полный вес материала на метр шлангокабеля.

Кроме хороших коррозионных свойств и высокой прочности труба должна иметь хорошую усталостную прочность. В особенности это относится к динамической части шлангокабеля, на которую существенно влияют перемещения воды и плавучего блока. Можно сформулировать следующие общие требования к шлангокабелю:

Содержание Fe 35-55%

PRE (Cr+3,3Mo+16N) минимум 40

Предел текучести при растяжении Rp 0.2min=650 МПа.

Прочность на растяжение Rm=800-1000 МПа

Относительное удлинение А5 min 25%

Температура испытания в соответствии с ASTM G48A min 50°С

Температура испытания в соответствии с ASTM G48B min 35°С

Хорошая свариваемость

Хорошая усталостная прочность.

До настоящего времени наиболее часто используемым материалом для шлангокабелей является ферритно-аустенитная нержавеющая сталь, которая поступает на рынок под маркой Sandvik SAF 2507 и которая стандартизована как UNS S32750.

Авторы настоящего изобретения обнаружили, что для указанных целей можно использовать трубный материал с повышенным пределом текучести при растяжении и повышенной прочностью на растяжение при одновременном сохранении хорошей пластичности и хороших коррозионных свойств при точечной (питтинговой) коррозии за счет увеличения содержания таких важных легирующих элементов, как Cr, N, и использования адекватного содержания Мо, что позволяет получить двухфазный суперсплав, который после горячей экструзии (прессования) в бесшовные (цельнотянутые) трубы подвергается холодной прокатке до требуемого конечного размера, а после этого окончательному отжигу при точно выбранном уровне температур.

Такой материал известен из патента США №5582656. Далее этот тип материала и его сравнительные испытания будут описаны более подробно.

B указанном патенте США описывается ферритно-аустенитный сплав, содержащий в вес.%:

углерод до 0,05

кремний до 0,8

марганец 0,30-1,5

хром 28,0-30,0

никель 5,80-7,40

молибден 2,00-2,50

азот 0,30-0,40

медь до 1,0

вольфрам до 2,0

сера до 0,010

железо остальное,

при этом 30-70 об. % составляет феррит и остальное аустенит.

Предел текучести сплава при растяжении составляет по меньшей мере 750 МПа, а относительное удлинение составляет по меньшей мере 25%.

Пример 1

Испытуемый материал был изготовлен отливкой 170 кг заготовок, из которых горячей ковкой получали круглые стержни диаметром 126 мм, из которых за счет горячей экструзии получали бесшовные трубы размерами 48×5 мм, имеющие после холодной прокатки размеры 31×3 мм. Окончательный отжиг проводили при температуре 1040°С, время выдержки 5 минут, с последующей закалкой в воде. Состав материалов приведен в Таблице 1. Эти сплавы принимали во внимание в качестве сравнительного примера, который показывает, что подобные материалы в основном не соответствуют предъявляемым требованиям для указанного применения.

Таблица 1

Состав испытуемого материала, вес.%
ЗавалкаСSiMn РSppmCrМoN
6546670,0160,191,02 0,0104929,378,621,55 0,26
6546680,0150,19 0,990,0094629,308,84 2,030,25
6546690,015 0,190,910,0104329,26 8,002,070,31
654670 0,0150,190,880,01130 29,089,092,570,26
6546710,0160,161,010,012 3228,817.482,500,37
6546720,0150,151,00 0,0123629,016,662,51 0,40
6546740,0160,16 0,880,0113229,929,38 1,570,26
6546750,016 0,160,920,0123530,39 7,741,500,39
654676 0.0170,171,030.01135 30,506,941,530,40
6546780,0170,170,990,011 3130,119,622,010,26
6546790,0160,160,89 0,0123830,157,952,08 0,35
6546800,0160,16 0,870,0124230,516,20 2,080,44
6546830,016 0,160,960,0113830,15 8,112,560,35.
654684 0,0150,150,910,01144 30,615,712,570,48
В Таблице 1: ppm = частей на миллион

Материалы были испытаны на точечную коррозию в 6% FеСl3 в соответствии с ASTM G48C, но при начальной температуре 40°С и со ступенями 5°С, до получения следов точечной коррозии. Температуры, при которых это происходит, были названы критическими температурами точечной коррозии (СРТ).

Были также проведены испытания на относительное удлинение при комнатной температуре. Результаты проведенных испытаний сведены в Таблицу 2.

Таблица 2

Результаты испытаний на точечную коррозию в соответствии с ASTM G48C и на растяжение для бесшовных труб размерами 31×3 мм. Усреднение для двух испытаний на одну садку
СадкаСРТ (°С)Rp02 (МПа) Rm (МПа)А5 (%)
65466740 63586132
65466840 64686731
65466962,5 66588534
654670 5566688230
654671 7568790832
654672 7569491235
654674 53,866787931
654675 6568991435
654676 6069890335
654678 4567889034
654679 7569291635
654680 6069591435
654683 6571592633
654684 6070293233

Пример 2

Материал был изготовлен по технологии аргонокислородного обезуглероживания (AOD), с применением горячей экструзии и горячей прокатки, после чего получали круглые стержни диаметром 126 мм, из которых за счет экструзии получали бесшовные трубы размерами 33,2×3,5 мм, а после холодной прокатки получали трубы размерами 15,2×1,2 мм. Отжиг был проведен при двух различных температурах 1020°С и 1060°С, время выдержки 2 минуты, с последующей закалкой в воде.

Состав материала приведен в Таблице 3. Этот состав материала лежит в диапазоне состава материала в соответствии с настоящим изобретением.

Таблица 3

Состав испытуемого материала, вес.%
СSiMnРS CrNiМоNСа
0,0210,270,900,0160,001 28,806,622,200,380,0026

Указанный материал был испытан на точечную коррозию, частично в искусственной морской воде при увеличенном потенциале (см. таблицу 4), частично в 6% FeCl3 (см. таблицу 5). Такие испытания часто используют при приемочных испытаниях высоколегированных нержавеющих сталей, причем они предусмотрены в соответствии со стандартом ASTM G48. В проведенных испытаниях проверку материала производили в его окончательном виде, то есть после прокатки на пилигримовом прокатном стане и отжига, с поверхностью, зашлифованной после отжига. Никакого дополнительного шлифования внутренней или внешней поверхностей трубы перед проведением испытаний не производили. Результаты показывают, что материал этой формы (в виде трубы) имел свойства точечной коррозии, соответствующие свойствам материала SAF 2507.

Таблица 4

Критическая температура точечной коррозии (СРТ) труб шлангокабеля в соответствии с настоящим изобретением в искусственной морской воде при +600 мВ SCE, для материалов с различными температурами окончательного отжига (1020°С и 1060°С)
ТестСРТ (°С) 1СРТ (°С) 2 СРТ (°С) 3СРТ (°С) 4СРТ (°С) 5 СРТ (°С) 6СРТ (°С) среднееS (°С)
1 (1060°С)75757075 7570733
2 (1020°С) 6565706565 70673
Таблица 5

Критическая температура точечной коррозии (СРТ) труб шлангокабеля в соответствии с настоящим изобретением в 6% FеСl3 (испытание ASTM G48), для материалов с различными температурами окончательного отжига (1020°С и 1060°С)
ТестСРТ(°С)

тест 1
СРТ(°С)

тест 2
1(1060°С) 7575
2(1020°С)65 65

В шлангокабеле обычно используют трубы с внутренним диаметром около 10-20 мм. При таких размерах труб шлангокабеля для марки стали SAF 2507 должен быть гарантирован предел текучести при растяжении 650 МПа и прочность на растяжение 850 МПа, причем эти величины используют при проектном расчете шлангокабеля. Трубы с аналогичными размерами, изготовленные при помощи соответствующего способа из марки стали в соответствии с настоящим изобретением, совершенно неожиданно имеют предел текучести при растяжении свыше 850 МПа и прочность на растяжение свыше 1000 МПа, при сохранении пластичности A min 25% (см. Таблицу 5).

При температуре окончательного отжига 1060°С могут быть выполнены минимальные требования по поводу относительного удлинения, недостижимые при использовании температуры окончательного отжига 1020°С. Полученные результаты показывают, что толщина стенки трубы может быть снижена почти на 20-25% по сравнению с трубой из стали SAF 2507 такого же назначения. Для шлангокабеля длиной 2 км, имеющего, например, 12 труб, такое снижение толщины стенки труб может привести к весьма существенному снижению полного веса.

Таблица 6

Значения прочности труб шлангокабеля размерами 15,1×1,2 мм при комнатной температуре, при использовании двух различных температур отжига (1020°С и 1060°С)
Rp0,2 (МПа)Rm (МПа)А (%)
1060°С
1876102127,6
2 882102928,1
3893 105927,5
48911043 27,2
5912107027,6
6883103927,2
Среднее 890104427,5
1020°С
18921036 24,5
28871026 23,6
3886103325,0
4894103226,6
5 900103524,1
6 889102426,4
Среднее891 103125,0

Очевидно, что температура отжига 1060°С является более благоприятной, чем температура отжига 1020°С. Критическое сопротивление точечной коррозии выше для материала, отожженного при 1060°С, причем усредненное удлинение при испытаниях на растяжение также выше для материала, отожженного при 1060°С. Следует специально отметить, что материал, отожженный при 1020°С, отвечает требованиям по меньшей мере 25% удлинения, которые предъявляются к известным в настоящее время материалам для шлангокабеля. Таким образом, желательная температура отжига для материала в соответствии с настоящим изобретением должна составлять около 1060°С, а преимущественно лежать в диапазоне 1040-1080°С.

Трубы сваривают встык при помощи 0,8 мм ТIG-проволоки (присадочной проволоки), имеющей такой же состав, что и основной материал. В качестве защитного газа при сварке используют Ar+3% N2. Состав присадочного материала приведен в Таблице 7.

Таблица 7

Состав ТIG-проволоки, использованной при сварке
СSiMnР SCrNiМоN
0,013 0,231,150,0180,001 29,498,032,510,30

Материал подвергался испытаниям на растяжение в соответствии с ASTM G48C, при начальной температуре 40°С и со ступенями 5°С. Полученные результаты приведены в Таблице 8.

Таблица 8

Результаты испытаний на растяжение и точечную коррозию (Критическая температура точечной коррозии (СРТ) в соответствии с ASTM G48C) для сваренных встык труб, при двух различных температурах отжига материала труб
СРТ (°С)Rp02 (МПа)Rm (МПа) А5 (%)
1020°С40°С8731056 15,3
1060°С42,5°С859 105716,4

Были проведены исследования усталостных свойств материала при приложении механических напряжений и проведено сравнение результатов с данными для других высоколегированных нержавеющих сталей. Тесты проводили при изменении нагрузки с синусоидальной формой волны и при средней скорости удлинения 5×10-3S-1. Полученные результаты приведены на фиг.2.

В результате проведенных испытаний оказалось, что материал, который наиболее подходит для упомянутого выше окончательного отжига и в остальном хорошо оптимизирован для применения в качестве материала трубы шлангокабеля, должен иметь состав с содержанием С максимум 0,05%, Si максимум 0,8%, Mn 0,30-1,5%, Cr 28,0-30,0%, Мо 2,00-2,50%, Ni 5,80-7,40%, N 0,30-0,40%, Сu максимум 1,0%, W максимум 2,0%, S максимум 0,010%, с остатком Fe, и нормально встречающимися примесями, причем содержание феррита составляет 30-70%, а баланс образован аустенитом. После окончательной холодной прокатки трубы подвергают окончательному отжигу при температуре 1040-1080°С в течение 3-10 минут с последующей закалкой в воде.

Можно видеть, что сталь в соответствии с настоящим изобретением имеет усталостные свойства в том же диапазоне, что и SAF 2507. Проверка усталостных свойств при приложении напряжений показывает, сколько раз материал может быть подвергнут растяжению до того, как в нем возникает усталость при напряжении. Так как трубы шлангокабеля сваривают вместе для получения длинных отрезков и наматывают на барабаны для хранения перед их использованием в шлангокабеле, нет ничего необычного в том, что они совершают ряд рабочих циклов с приложением определенной пластической деформации перед тем, как их ставят в шлангокабель. Полученные данные для усталости при напряжении показывают, что риск разрыва в результате усталости при напряжении трубы в шлангокабеле практически отсутствует.

Сталь, соответствующая упомянутым выше результатам анализа, имеет свойства, которые великолепно подходят для ее применения в качестве материала труб шлангокабеля. Указанный материал имеет высокую коррозионную стойкость в морской воде за счет его высокого PRE-числа и совместимости с используемыми в настоящее время флюидами, которые протекают по различным трубам шлангокабеля. Высокая прочность материала позволяет существенно снизить толщину стенок труб по сравнению с наиболее распространенным материалом для данного применения, а именно SAF 2507. Снижение веса шлангокабеля имеет исключительное значение для добычи нефти с больших океанских глубин, которая становится все более и более обычной.

Сварные стыки труб работают удовлетворительно, что необходимо для создания шлангокабелей. Усталостные свойства показывают, что риск разрушения за счет вызванной напряжениями усталости практически отсутствует.

Класс C22C38/44 с молибденом или вольфрамом

высокопрочная броневая сталь и способ производства листов из нее -  патент 2520247 (20.06.2014)
высокопрочная нержавеющая сталь для нефтяных скважин и труба из высокопрочной нержавеющей стали для нефтяных скважин -  патент 2519201 (10.06.2014)
среднеуглеродистая конструкционная сталь высокой обрабатываемости резанием -  патент 2511008 (10.04.2014)
низкоуглеродистая конструкционная сталь с улучшенной обрабатываемостью резанием -  патент 2503736 (10.01.2014)
нержавеющая сталь для нефтяной скважины, труба из нержавеющей стали для нефтяной скважины и способ получения нержавеющей стали для нефтяной скважины -  патент 2494166 (27.09.2013)
высокопрочная коррозионно-стойкая сталь -  патент 2493285 (20.09.2013)
супербейнитная сталь и способ ее получения -  патент 2479662 (20.04.2013)
способ криогенной обработки аустенитной стали -  патент 2464324 (20.10.2012)
труба из высокопрочной нержавеющей стали с превосходной устойчивостью к растрескиванию под действием напряжений в сульфидсодержащей среде и устойчивостью к высокотемпературной газовой коррозии под действием диоксида углерода -  патент 2459884 (27.08.2012)
применение конструкционного материала и электролизера, изготовленного из такого материала -  патент 2457271 (27.07.2012)

Класс C21D8/02 при изготовлении плит или лент

способ производства холоднокатаного проката для упаковочной ленты -  патент 2529325 (27.09.2014)
способ изготовления высокопрочного холоднокатаного стального листа с превосходной обрабатываемостью -  патент 2528579 (20.09.2014)
способ горячей прокатки сляба и стан горячей прокатки -  патент 2528560 (20.09.2014)
высокопрочный холоднокатаный стальной лист с превосходным сопротивлением усталости и способ его изготовления -  патент 2527571 (10.09.2014)
стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2527506 (10.09.2014)
холоднокатаный стальной лист, обладающий превосходной сгибаемостью и способ его производства -  патент 2524021 (27.07.2014)
листовая конструкционная нержавеющая сталь, обладающая превосходной коррозионной устойчивостью в сварном шве, и способ ее производства -  патент 2522065 (10.07.2014)
способ производства штрипсов из низколегированной стали -  патент 2519720 (20.06.2014)
способ производства горячего проката из микролегированных сталей -  патент 2519719 (20.06.2014)
способ термомеханической обработки -  патент 2519343 (10.06.2014)
Наверх