способ определения напряжения плоских зон полупроводника в металл-диэлектрик-полупроводник-структурах
Классы МПК: | H01L21/66 испытания или измерения в процессе изготовления или обработки |
Автор(ы): | Бородзюля В.Ф. |
Патентообладатель(и): | Санкт-Петербургский государственный технический университет |
Приоритеты: |
подача заявки:
2000-03-06 публикация патента:
10.09.2003 |
Изобретение относится к области измерения и контроля электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе металл-диэлектрик-полупроводник (МДП)-структур. Способ заключается в том, что на МДП-структуру подают напряжение смещения Uсм и обедняющие импульсы напряжения U1 с амплитудой, равной 4
nqN/C20, где
n- диэлектрическая постоянная полупроводника, N - уровень легирования полупроводника, q - заряд электрона, С0 - емкость диэлектрика МДП-структуры, а напряжение плоских зон находят по напряжению смещения, при котором сигнал на нагрузочной емкости уменьшается в два раза по сравнению с сигналом на ней при подаче обедняющего импульса на МДП-структуру, находящуюся в состоянии обогащения. Технический результат, обеспечиваемый изобретением, - получение возможности просто при непосредственной регистрации Uсм=UFB, без сложных расчетов определять UFB с высокой точностью (до 1,0%) при уменьшении сигнала на нагрузочной емкости в два раза. Способ может быть выполнен на стандартной радиоизмерительной аппаратуре.


Формула изобретения
Способ определения напряжения плоских зон полупроводника в металл-диэлектрик-полупроводник(МДП)-структурах, включающий подачу на МДП-структуру и регулирование постоянного напряжения смещения, подачу на структуру обедняющего импульса напряжения и регистрацию сигнала на нагрузочной емкости, включенной последовательно с МДП-структурой, отличающийся тем, что амплитуду обедняющего импульса напряжения выбирают равной 4

Описание изобретения к патенту
Изобретение относится к области измерения и контроля электрофизических параметров полупроводников и может быть использовано для оценки качества технологического процесса при производстве твердотельных микросхем и приборов на основе МДП-структур. Напряжение плоских зон UFB является одним из основных и широкоиспользуемых параметров МДП-структур, величина которого определяется суммарной плотностью зарядов (Qф) в диэлектрике и на границе раздела диэлектрик-полупроводник. В свою очередь величина Qф полностью определяется физическими свойствами диэлектрика и полупроводника и особенностями технологического процесса изготовления приборов. В настоящее время для исследования свойств МДП-структур, в частности для определения UFB, широко используется метод вольт-фарадных характеристик (ВФХ) [1]. Однако, в этом случае для определения UFB необходимо сопоставление теоретических (расчетных) и экспериментальных ВФХ, что, во-первых, не обеспечивает экспрессности измерений, и во вторых, не всегда возможно, так как для экспериментальных МДП-структур в ряде случаев не выполняются условия, необходимые для расчета теоретических ВФХ (например, наличие утечек в диэлектрике и большая плотность поверхностных состояний и ловушек на границе диэлектрик-полупроводник не позволяет с достаточной точностью вычислять концентрацию легирующей примеси в полупроводнике и завышает величину емкости структуры в режиме плоских зон). Известен способ определения UFB при освещении МДП-структуры импульсами света из области собственного поглощения полупроводника [2]. Сущность способа заключается в подаче и регистрации на МДП-структуре такого напряжения смещения Uсм, при котором сигнал фотоЭДС при освещении МДП-структуры принимает минимальное значение. Недостатками данного способа являются:необходимость специальной оптической системы и источника света определенной длины волны излучения;
невозможность определения UFB для непрозрачных для света МДП-структур (образцы с непрозрачными электродами в закрытых корпусах);
искажение минимального сигнала фотоЭДС за счет перезарядки поверхностных состояний (ПС) светом - это затрудняет определение UFB, особенно при концентрации ПС больших N~1011 эВ-1

1/C1+1/C2=1/C3,
где C1, С2, С3 - интегральные емкости МДП-структуры на первом, втором и третьем обедняющих импульсах соответственно Недостатком данного способа является необходимость изготовления специального измерительного устройства для его реализации. За прототип выбран способ определения UFB, описанный в [4]. Для определений напряжения плоских зон используется простая мостовая схема измерения емкости, которая балансируется одновременно по двум сигналам - малому высокочастотному тестовому сигналу и большому сигналу обедняющего импульса U1 при подаче на структуру постоянного напряжения смещения Uсм, величина которого может изменяться. При этом определяется соответственно дифференциальная (Сп) и интегральная (C1) емкости МДП-структуры. В режиме плоских зон, как показывают расчеты, должно выполняться соотношение: C1=2Сп. Напряжение смещения, при котором выполняется это соотношение, и будет являться напряжением UFB. Недостатком данного способа является необходимость измерения в нем дифференциальной емкости, которую измеряют на малом тестовом сигнале амплитудой порядка kT/q (30-50 мВ), где k - постоянная Больцмана, Т - температура МДП-структуры, q - заряд электрона). Это накладывает высокие требования к чувствительности применяемой измерительной техники. Кроме того, недостатком данного способа является необходимость применения специального устройства для измерения дифференциальной и интегральной емкости МДП-структуры. Технический результат, обеспечиваемый изобретением, - увеличение точности определения UFB за счет использования только большого сигнала обедняющего импульса напряжения, а также упрощения устройства, реализующего способ. Этот результат достигается тем, что в известном способе выбирают амплитуду обедняющего импульса равной 4


QM=QSC=Q0. (1)
В свою очередь
QSC=qNW, (2)
где W - приращение ширины ОПЗ полупроводника
Q0=С0U0, (3)
где U0 - падение напряжения в диэлектрике
С0U0=qNW. (4)
Для приращения ширины ОПЗ (W) в момент подачи на структуру импульса напряжения U1

где




Используя выражения (4), (5), (6) и учитывая, что в точке плоских зон

U0 = 2

Анализ выражения (7) позволяет сделать вывод о том, что именно при U1/U0= 2 приложенный к МДП-структуре обедняющий импульс напряжения поделится в ней пополам, т.к. U1=2U0=U0+



















1. Zaininger K. H. Heiman F.P. The Technique as an Analytical Tool // Solid State Technology, v.13, 1973, 6, p.47-55. 2. Yun В.Н. Direct measurement of flat-bend voltage in MOS by infrared exception // Applied Physics letters, v. 21, 1972, 5, р.194-195. 3. Патент РФ 2133999, H 01 L 21/66, 1999. 4. Бородзюля В.Ф., Голубев В.В. Методы электрического тестирования заряда в диэлектрике и на поверхностных состояниях в МДП-структурах. Тезисы докладов Российской научно-технической конференции по физике диэлектриков с международным участием. "Диэлектрики-93", С.-Пб., 22-24 июня 1993, ч. 2, с. 100.
Класс H01L21/66 испытания или измерения в процессе изготовления или обработки