износостойкий сплав на основе железа

Классы МПК:C22C37/06 содержащие хром
C22C37/10 содержащие алюминий или кремний 
C22C38/36 с более 1,7 % углерода по массе
B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 
Автор(ы):, , ,
Патентообладатель(и):Общество с ограниченной ответственностью фирма "Спецметаллы"
Приоритеты:
подача заявки:
2001-03-20
публикация патента:

Изобретение относится к области металлургии, в частности к получению износостойких сплавов на основе железа. Изобретение может быть использовано для получения износостойких высокотемпературных покрытий на деталях металлургического оборудования, в частности, наносимых дуговой наплавкой. Предложен износостойкий сплав, содержащий следующие компоненты, мас.%: углерод 4,5-5,5, хром 19,0-24,0, молибден 5,5-7,0, ниобий 6,0-8,0, вольфрам 1,0-2,0, ванадий 0,5-1,0, железо остальное. Сплав дополнительно содержит флюсующие добавки - кремний и/или бор в количестве, мас.%: кремний 1,0-4,0, бор 0,01-0,8. Эффективность применения сплава обусловлена высокой твердостью и износостойкостью при повышенных температурах, технологичностью нанесения и низкой стоимостью. 2 з.п. ф-лы, 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

1. Износостойкий сплав на основе железа, содержащий углерод, хром, молибден, ниобий, вольфрам, ванадий, отличающийся тем, что он дополнительно содержит флюсующие элементы - кремний и/или бор при следующем соотношении компонентов, мас.%:

Углерод - 4,5-5,5

Хром - 19,0-24,0

Молибден - 5,5-7,0

Ниобий - 6,0-8,0

Вольфрам - 1,0-2,0

Ванадий - 0,5-1,0

Флюсующие элементы - кремний и/или бор - 0,01-4,0

Железо - Остальное

2. Износостойкий сплав по п.1, отличающийся тем, что в качестве флюсующего элемента он содержит кремний в количестве 1,0-4,0%.

3. Износостойкий сплав по п.1, отличающийся тем, что в качестве флюсующего элемента он содержит бор в количестве 0,01-0,8%.

Описание изобретения к патенту

Изобретение относится к области металлургии, конкретно к получению износостойких сплавов на основе железа. Изобретение может быть использовано для получения износостойких высокотемпературных покрытий на деталях металлургического оборудования, в частности, наносимых дуговой наплавкой.

В промышленности (машиностроении, металлургии, строительстве и т.д.) широко применяются для изготовления и ремонта деталей сплавы на основе железа, износостойкость которых обеспечивается за счет мелкодисперсных твердых включений карбидов, боридов, силицидов в металлической матрице.

Известен износостойкий сплав на основе железа, имеющий структуру с равномерно распределенными частицами карбидов размером 30-50 мкм и содержащий компоненты в следующем соотношении, мас.%:

Углерод - 1,0-3,0

Хром - 6,1-20

один или несколько элементов из:

Молибден - 0,5-10

Вольфрам - 0,5-10

Никель - 0,5-10

Кобальт - 0,5-10

Ниобий - 0,2-5,0

Тантал - 0,5-5,0

Ванадий - 0,2-0,5

Железо - Остальное

при этом суммарное содержание хрома, молибдена, вольфрама, ванадия, ниобия и тантала не более 20% (Jp 55038938 А, МПК С 22 С 38/26, 1980).

Данный сплав применяется для поверхностного упрочнения рабочих поверхностей рокеров в ДВС и обеспечивает достаточную износостойкость в парах трения при повышенных температурах. Однако жидкотекучесть и флюсующие свойства сплава недостаточны для его применение при наплавке.

Известен также железоникелевый сплав (US 4292074, МПК С 22 С 30/00, 1981), содержащий компоненты, мас.%:

Углерод - 0,5-2,0

Никель - 30-60

Железо - 30-60

Кремний - 6,0-10,0

Бор - 0,5-3,0

Хром, молибден и вольфрам находятся в сплаве в виде карбидов и боридов, сумма которых составляет 2,0-8,0%, а никель и железо образуют соответственно силициды и бориды.

Данный сплав хорошо наплавляется, однако в условиях интенсивного абразивного износа при высоких температурах его стойкость недостаточна ввиду отсутствия ниобия и ванадия, которые повышают ударную вязкость и горячую твердость.

Наиболее близким к заявляемому техническому решению является высокотемпературный износостойкий сплав на основе железа с высокой горячей твердостью и стойкостью к окислению (US 5674449, МПК С 22 С 38/24, 1997 - прототип).

Он содержит, мас.%:

Углерод - 1,0-2,8

Хром - 3,0-16,0

Молибден - До 14,0

Вольфрам - До 14,0

Ниобий - 0,5-5,0

Ванадий - 1,0-8,0

Кобальт - 2,0-12,0

Железо - Остальное

при этом сумма (молибден + вольфрам) = 6-14%.

Данный сплав применяется для изготовления деталей с финишной механической обработкой, например седел клапанов ДВС, и имеет твердость 54-56 HRC. Из-за использования кобальта стоимость высока, а его твердость недостаточна для работы в условиях высоких температур и абразивного изнашивания.

Технической задачей изобретения является создание износостойкого сплава для работы в условиях высоких температур и интенсивного абразивного изнашивания с хорошей технологичностью наплавки и низкой стоимостью.

Технический результат достигается тем, что предложен износостойкий сплав на основе железа, содержащий углерод, хром, молибден, ниобий, вольфрам, ванадий, отличающийся тем, что он дополнительно содержит флюсующие добавки - кремний и/или бор, при следующем соотношении компонентов, мас.%:

Углерод - 4,5-5,5

Хром - 19,0-24,0

Молибден - 5,5-7,0

Ниобий - 6,0-8,0

Вольфрам - 1,0-2,0

Ванадий - 0,5-1,0

Кремний - 1,0-4,0

Бор - 0,01-0,8

Железо - Остальное

Введение в состав сплава флюсующих добавок - кремния и/или бора - способствует повышению технологичности наплавки за счет образования легкоплавких эвтектик и связывания кислорода в шлаки, всплывающие на поверхность. Данные элементы также повышают износостойкость при высоких температурах за счет дополнительного образования силицидов и боридов, а также сложных твердых фаз с участием бора, кремния и углерода.

Присутствие бора в высокоуглеродистом сплаве начиная с 0,01% снижает склонность к графитизации и усиливает процессы карбидообразования, повышая тем самым твердость и износостойкость. При увеличении доли бора более 0,8% твердость растет, материал становится слишком хрупким, его трещиностойкость снижается.

Введение кремния начинает оказывать заметное влияние на технологичность наплавки начиная с 1%, а увеличение его содержания более чем до 4% повышает хрупкость наплавленных слоев и количество дефектов в них (поры, трещины, включения).

Данный материал представляет собой металлическую матрицу - сплав на основе железа, в которой равномерно распределены мелкодисперсные тугоплавкие металлоподобные фазы - карбиды (Cr3C2, VC, NbC, Мо2С, WC), бориды (CrB2, VB2, NbB2, Mo2B5, W2B5), силициды (CrSi2, VSi2, NbSi2, MoSi2, WSi2) и др. подобные соединения. Упрочняющие фазы имеют высокую температуру плавления (более 2200oС для боридов, более 1900oС для карбидов и более 1500oС для силицидов), они жаропрочны и жаростойки. Микротвердость боридов превышает 25 ГПа, карбидов - 13 ГПа и силицидов - 7 ГПа, что обеспечивает высокую износостойкость сплавов, упрочненных данными соединениями.

Химический состав данного сплава выбран экспериментально и указан в табл. 1.

Для получения сплава изготавливали наплавочную порошковую ленту размером 16,5 х 3,8 мм, которая затем наплавлялась на пластины из низкоуглеродистой стали размером 300 х 250 х 40 мм. Наплавку проводили в 2 слоя общей толщиной 4-5 мм на площадку 200 х 150 мм.

Режим наплавки:

сварочный ток 800 А; напряжение на дуге 30 В; вылет электрода 50 мм; размах колебаний электрода 180 мм; шаг наплавки 10 мм; скорость наплавки 32 м/час.

Проводили измерения твердости и исследования структуры материала после наплавки и, с целью определения стабильности свойств при термическом воздействии, после термообработки на воздухе при 600oС в течение 1 часа (загрузка в горячую печь и охлаждение при комнатной температуре). Металлографическим методом определяли наличие пор, трещин, включений, рыхлот в наплавленном слое и на границе с основным металлом. Результаты исследований приведены в табл. 2.

Процесс наплавки стабилен, разбрызгивание металла - в пределах технологических требований, поры, трещины и шлаковые включения на поверхности и в глубине слоя незначительны.

После наплавки материал находится в неравновесном состоянии, и последующая термообработка, приводя к снятию напряжений и стабилизации структуры, одновременно снижает твердость ряда составов в пределах 1-2 единиц HRC. Увеличение доли легирующих и флюсующих элементов приводит к росту твердости. Структура и свойства наплавленного сплава после термообработки с точки зрения эксплуатационных свойств изменились незначительно, что обеспечивает стабильную износостойкость материала при высоких температурах.

Технико-экономическая эффективность применения данного сплава в металлургии обусловлена сочетанием высокой твердости и износостойкости при повышенных температурах с технологичностью нанесения и низкой стоимостью.

Стоимость кобальтсодержащих материалов (по прототипу) на 10-20% выше, чем у предлагаемых сплавов.

Заявленные сплавы были использованы для нанесения защитного покрытия методом электродуговой наплавки на рабочую поверхность лотков засыпных аппаратов доменной печи. По результатам промышленных испытаний стойкость лотков превышает 6 месяцев, что обеспечивает эксплуатацию засыпных аппаратов в течение всего межремонтного периода.

Класс C22C37/06 содержащие хром

износостойкий чугун -  патент 2497972 (10.11.2013)
чугунный сплав для головок цилиндров -  патент 2491363 (27.08.2013)
чугун -  патент 2481413 (10.05.2013)
чугун -  патент 2462527 (27.09.2012)
серый перлитный чугун -  патент 2450076 (10.05.2012)
немагнитный чугун -  патент 2449044 (27.04.2012)
серый фрикционный чугун -  патент 2442838 (20.02.2012)
чугун -  патент 2424344 (20.07.2011)
чугун -  патент 2422548 (27.06.2011)
чугун -  патент 2417269 (27.04.2011)

Класс C22C37/10 содержащие алюминий или кремний 

Класс C22C38/36 с более 1,7 % углерода по массе

Класс B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 

быстрозакаленный припой из сплава на основе титана-циркония -  патент 2517096 (27.05.2014)
сварочная проволока -  патент 2511382 (10.04.2014)
пригодный для сварки, жаропрочный, стойкий к окислению сплав -  патент 2507290 (20.02.2014)
гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов -  патент 2500827 (10.12.2013)
ролик для поддерживания и транспортирования горячего материала, имеющий наплавленный посредством сварки материал, присадочный сварочный материал, а также сварочная проволока для проведения наплавки сваркой -  патент 2499654 (27.11.2013)
аустенитный сварочный материал и способ профилактического технического обслуживания для предотвращения коррозионного растрескивания под напряжением и способ профилактического технического обслуживания для предотвращения межкристаллитной коррозии с его использованием -  патент 2488471 (27.07.2013)
сварочная проволока из нержавеющей стали с флюсовым сердечником для сварки оцинкованного стального листа и способ дуговой сварки оцинкованного стального листа с применением указанной сварочной проволоки -  патент 2482947 (27.05.2013)
сварочная проволока из низкоуглеродистой легированной стали -  патент 2477334 (10.03.2013)
способ нанесения покрытия на поверхность деталей с помощью электроконтактной сварки с использованием порошкового присадочного материала, содержащего железный порошок, и присадочный материал для его осуществления -  патент 2473413 (27.01.2013)
твердый припой -  патент 2469829 (20.12.2012)
Наверх