дисперсно-упрочненный материал на медной основе для сварочной техники
Классы МПК: | B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C C22C9/00 Сплавы на основе меди |
Автор(ы): | Шалунов Е.П., Матросов А.Л., Липатов Я.М., Казаков С.В. |
Патентообладатель(и): | Товарищество с ограниченной ответственностью Научно- техническая фирма "Техма" |
Приоритеты: |
подача заявки:
1996-09-20 публикация патента:
27.01.1998 |
Задачей изобретения является создание материала с высокими значениями тепло- и электропроводности, температуры рекристаллизации и устойчивости к износу для электродов контактной сварки и токоподводящих наконечников электродуговой сварки плавящимся электродом. Дисперсно-упрочненный материал на медной основе для сварочной техники содержит следующие компоненты в мас.%: хром 0,4 - 6,0, углерод 0,1 - 1,5, медь - остальное. 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
Дисперсно-упрочненный материал на медной основе для сварочной техники, содержащий медь, углерод, оксидо- и карбидообразующий элемент, отличающийся тем, что в качестве оксидо- и карбидообразующего элемента он содержит хром при следующем соотношении компонентов, мас. Хром 0,4 6,0Углерод 0,1 1,5
Медь Остальноеа
Описание изобретения к патенту
Изобретение относится к сварочному производству, в частности к составам материалов для электродов контактной сварки и токоподводящих наконечников дуговой электросварки плавящимся электродом в среде защитных газов. Указанные детали работают в условиях абразивного и электроэрозионного износа при воздействии высоких нагрузок и температур (до 800 - 900oC), а также в контакте с жидкими (расплавленными) металлами, что требует от используемых при этом материалов высокой стойкости к разупрочнению при повышенных температурах, высокой стойкости к износу при одновременно хорошей тепло- и электропроводности. Характеристикой, отражающей стойкость материала к разупрочнению при повышенных температурах, как правило, служит температура начала рекристаллизации материала. Благодаря высокой тепло- и электропроводности медь - ценный материал в электротехнике. Основной ее недостаток - малую прочность - преодолевают наклепом, легированием, термической и термомеханической обработкой. Однако наклеп можно использовать для упрочнения меди лишь в условиях работы при невысоких температурах, т.к. выше примерно 200oC начинается процесс ее рекристаллизации [1]. Упрочнение меди твердым раствором при ее легировании для получения сплавов, используемых в электросварочной технике, малоприемлемо, т.к. растворение большинства легирующих элементов, достаточных для эффективного упрочнения меди, приводит к существенному снижению ее тепло- и электропроводности. Более эффективно дисперсионное твердение, при котором матрица отожженного или состаренного сплава представлена практически чистой медью с высокой тепло- и электропроводностью и второй фазой меньшей тепло- и электропроводности. Тепло- и электропроводность двухфазных смесей значительно меньше, а температура начала рекристаллизации существенно выше, чем у твердых растворов при той же концентрации легирующего элемента в сплаве, и в идеальном случае подчиняется закону аддитивности. Дисперсионно твердеющие хромовые бронзы, содержащие обычно от 0,4 до 1,0 мас. % Cr, обладают высокой тепло- и электропроводностью после закалки и старения. Хром мало растворим в меди и поэтому после старения структура хромовых бронз представлена почти чистой медью и небольшим количеством (по объему) выделений хрома. При такой структуре сохраняется высокая тепло- и электропроводность, составляющая примерно 805 от тепло- и электропроводности меди. Хромовые бронзы имеют высокое сопротивление ползучести, хорошо сопротивляются износу [1]. Еще более высоким сочетанием свойств отличаются дисперсионно твердеющие бронзы, одновременно легированные и хромом, и цирконием [2]. Введение сотых долей процента циркония в сплавы меди с 0,4 - 1,0 мас.% Cr приводит к существенному повышению температуры начала рекристаллизации, прочности и жаропрочности. Структура этих сплавов в состаренном состоянии состоит из почти чистой меди и выделений хрома. Находящийся в твердом растворе цирконий уменьшает диффузионную подвижность хрома и поэтому задерживает коагуляцию выделений хрома, что и обусловливает более высокую жаропрочность хромоциркониевых бронз по сравнению с хромовыми бронзами. Однако, температура рекристаллизации указанных сплавов не превышает 500 - 600oC, что обусловлено растворимостью упрочняющих частиц при этой температуре в меди [2]. Известны [3] также материалы на медной основе, называемые дисперсно-упрочненными и содержащие в качестве упрочняющих частиц оксиды, карбиды, бориды и другие тугоплавкие соединения, которые не взаимодействуют с медью и не растворяются в ней вплоть до ее плавления. Материалы обладают высокими физико-механическими характеристиками, однако, имеют высокую стоимость обусловленную в основном длительными окислительно-восстановительными отжигами, которые лежат в основе большинства технологий их получения. Наиболее близким материалом к заявляемому является дисперсно-упрочненный материал на основе меди, содержащий 0,4 - 1,0 мас.% алюминия и 0,15 - 0,3 мас. % углерода [4] , который получают путем обработки исходной порошковой шихты в шаровой мельнице, холодного компактирования полученного в мельнице продукта (гранул) в брикеты, нагрев брикетов до температуры 880oC и экструзию их с этой температуры в пруток или профиль. Алюминий при этом используется как оксидо- и карбидообразующий элемент, который в процессе получения материала, реагируя с кислородом и углеродом, образует ультрадисперсные частицы оксида и карбида алюминия. Конечная структура материала представляет собой практически чистую медь, в которой равномерно распределены ультрадисперсные частицы Al2O3, Al4C3 и C, не реагирующие с медью и не растворяющиеся в ней вплоть до ее плавления. Благодаря наличию в материале трех разнородных упрочняющих фаз, уменьшена их склонность к коагуляции, в связи с чем материал обладает высокой температурой начала рекристаллизации, которая составляет 650 - 800oC. Кроме этого, материал имеет высокие прочностные показатели, а также, благодаря находящемуся в материале свободному углероду в ультрадисперсной форме, противоадгезионные и антифрикционные свойства. Однако, как показали исследования, материал имеет низкие значения тепло- и электропроводности, недостаточную жаропрочность и износостойкость, что снижает его эксплуатационные характеристики. Задача изобретения состоит в создании дисперсно-упрочненного материала на основе меди для сварочной техники с более высокими, чем у материала, выбранного в качестве прототипа, значениями тепло- и электропроводности, температуры начала рекристаллизации и износостойкости. Заявляемый дисперсно-упрочненный материал, содержащий медь, углерод и оксидо- и карбидообразующий элемент, в качестве оксидо- и карбидообразующего элемента содержит хром, при следующем соотношении компонентов, мас.%:Хром - 0,4 - 6,0
Углерод - 0,1 - 1,5
Медь - Остальное
Процесс получения материала состоит в следующем. Смесь порошков указанных веществ подвергают размолу и механохимической активации в высокоэнергетической шаровой мельнице, полученный продукт (гранулы) вхолодную компактируют в брикеты, которые затем нагревают до температуры 750oC и в этом состоянии экструдируют в прутки или профили. Весь процесс проводится на воздухе без применения каких-либо защитных или других газов. В процессе размола и механохимической активации порошков и дальнейшей их термодеформационной обработки происходит взаимодействие хрома с углеродом и кислородом воздуха с образованием ультрадисперсных частиц оксидов и карбидов хрома. Как показали проведенные исследования, упрочняющими фазами в заявляемом материале в состоянии после экструзии являются оксид Cr2O3 и карбиды Cr3C2 и Cr7C3. Кроме того, материал также содержит свободный углерод в ультрадисперсном виде, который, дополнительно упрочняя материал, повышает его противоадгезионные и антифрикционные свойства. Если подвергнуть материал так же, как и хромовые или хромоциркониевые бронзы закалке и старению, то к трем уже вышеуказанным упрочняющим фазам добавится еще одна - выделения хрома, что приводит к дополнительному упрочнению материала. Таким образом, в заявляемом материале сосуществуют два механизма упрочнения: дисперсное упрочнение и дисперсионное твердение, обеспечивающие в итоге материалу чрезвычайно высокие показатели температуры начала рекристаллизации и износостойкости при более высокой, чем у материала, выбранного в качестве прототипа, тепло- и электропроводности. Пример. Были приготовлены по 32 состава порошковой смеси материала-прототипа и заявляемого материала с содержанием в них соответственно алюминия и хрома по 0,4; 0,8; 1,6; 3,0; 6,0 мас.% и углерода 0; 0,05; 0,10; 0,20; 0,30; 0,40; 0,50; 0,75; 1,00; 1,25; 1,50 мас. %. По вышеприведенным технологиям из указанных смесей были получены горячепрессованные прутки материала-прототипа и заявляемого, из которых были изготовлены стандартные образцы для определения электропроводности, теплопроводности и температуры начала рекристаллизации материалов. Электропроводность определялась при комнатной температуре, а теплопроводность - в интервале температур от 20oC до 400oC. Измерения показали, что для исследуемых материалов значения электропроводности и теплопроводности относительно соответствующих значений меди совпадают (разница не превышает 5 - 10%). Поэтому, на фиг. 1 и фиг. 2 приведены графики зависимости лишь электропроводности






Класс B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C
Класс C22C9/00 Сплавы на основе меди