способ изготовления порошкового композита сu-cd/nb для электроконтактного применения

Классы МПК:C22C1/04 порошковой металлургией
H01H1/025 с медью в качестве основного материала
C22C9/00 Сплавы на основе меди
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)
Приоритеты:
подача заявки:
2013-01-10
публикация патента:

Изобретение относится к порошковой металлургии, в частности к получению металлокерамических электроконтактных материалов Cu-Cd/Nb. Из порошков меди и ниобия готовят шихту, проводят холодное прессование и спекание. Введение кадмия в заготовку осуществляют диффузионным насыщением путем ее выдержки в атмосфере, содержащей пары кадмия. Спеченную заготовку подвергают глубокой обработке давлением, которую сочетают с горячей экструзией и последующей холодной прокаткой или вытяжкой. После чего проводят допрессовку и отжиг. Обеспечивается понижение переходного сопротивления в контактной паре, повышение электроэрозионной стойкости, а также в возрастании длительной механической прочности в режимах многоцикловых ударных нагрузок и стойкости против сваривания. 1 табл.

Формула изобретения

Способ изготовления порошкового композита Cu-Cd/Nb для электроконтактов, включающий получение шихты смешиванием порошков, холодное прессование, спекание, последующее уплотнение заготовки допрессовкой и отжиг, отличающийся тем, что шихту готовят из порошков меди и ниобия, спеченную заготовку подвергают глубокой обработке давлением, которую сочетают с горячей экструзией спеченной объемной заготовки с последующей холодной прокаткой или вытяжкой, а введение кадмия в заготовку осуществляют диффузионным насыщением путем выдержки в атмосфере, содержащей пары кадмия.

Описание изобретения к патенту

Изобретение относится к области цветной металлургии, в частности к получению металлокерамических электроконтактных материалов методами порошковой металлургии.

В связи с дефицитностью, высокой и постоянно растущей стоимостью основного электроконтактного металла - серебра, не прекращаются попытки его эффективной замены на медь, обладающую необходимыми для такого использования электрическими, теплофизическими и физико-механическими свойствами. Наиболее сложным препятствием для широкого применения является склонность меди к окислению, что ведет к неконтролируемому росту переходного межконтактного сопротивления в ходе эксплуатации. Тем не менее, разработаны составы электроконтактных композитов, позволяющие преодолевать указанную трудность и успешно использовать контактные элементы на медной основе в ряде применений. Наиболее высокий уровень эксплуатационных характеристик обеспечивает композиционный материал электрического контакта, имеющий гетерогенную, тонкодисперсную микроструктуру, а также включающий добавки, способствующие гашению дуги, снижающие переходное сопротивление и повышающие стойкость против сваривания [Иванов В.В. Физико-химические основы технологии и материаловедение порошковых электроконтактных композитов / В.В.Иванов. - Красноярск: ИПЦ КГТУ, 2002. - 234 с.].

Эффективной дугогасящей добавкой в меди является металлический кадмий уже при небольшом содержании способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 0,5% [SU № 939579, С22С 9/00, С22С 1/04, С22С 1/10, Н01Н 1/02, опубл. 13.03.1978; RU № 2038400, Н01Н 1/02, опубл. 27.06.1995; RU № 2073736, С22С 9/00, опубл. 20.02.1997; RU № 2131941, С22С 9/00, Н01Н 1/02, опубл. 20.06.1999].

Добавление тугоплавкого металла ниобия [SU № 1746416, Н01Н 1/02, опубл. 07.07.1992; RU № 2009562, Н01Н 1/02, С22С 9/00, С22С 32/00, опубл. 15.03.1994], который имеет очень малую растворимость в меди, а также низшие оксиды с металлической проводимостью, создает гетерогенную структуру электроконтактного материала при слабом снижении электропроводности, способствует понижению переходного сопротивления в симметричной контактной паре. Одновременное введение кадмия и ниобия обеспечивает хорошие эрозионные характеристики, удовлетворительно низкое для меди межконтактное сопротивление, стойкость против сваривания контактной пары и механическую прочность в многоцикловых режимах работы.

Известны способы получения контакт-деталей для электроаппаратуры из композиционного материала, содержащего нерастворимые друг в друге тугоплавкий металл и медь [Порошковая металлургия. Спеченные и композиционные материалы / Под ред. В.Шатта. - М.: Металлургия, 1983. - 519 с.]. Это делают с помощью методов порошковой металлургии, создавая пористый каркас из тугоплавкой компоненты, который затем пропитывают жидкой медью, повышающей электро- и теплопроводность материала. Такие композиты обладают высокой дугостойкостью, но способ требует большого содержания тугоплавкого металла (до 2/3 по объему). Поэтому их электро- и теплопроводность имеет относительно невысокие значения, переходное сопротивление достаточно высокое, дугогасящая способность - слабая, что снижает их служебные свойства и сужает область применения.

Известен способ получения беспористых порошковых микрокомпозитов на основе меди [Башилов В.А. Композиционные сверхпроводящие материалы волокнистого строения / В.А.Башилов, В.А.Близнюк, И.А.Киянский, М.М.Сухарев. - М.: Металлургия, 1986. - 136 с.], содержащих ниобий или ванадий, и используемых в производстве сверхпроводников для криогенной техники. Материалы получают глубокой обработкой давлением, в процессе которой формируется высокодисперсная волокнистая микроструктура, полностью удаляется пористость, уплотняются межзеренные и межфазные границы.

Материал, изготовленный по этому способу, в электроконтактном назначении не используется, хотя обладает рядом необходимых свойств, наряду с высокими тепло- и электропроводностью, механической прочностью: хорошим уровнем коэффициента трения, износостойкости и переходного сопротивления при передаче тока в скользящем контакте [Liu P., Bahadur S., Verhoeven J.D. Electrical sliding friction and wear behavior of Cu-Nb in situ composites // IEEE Trans. CPMT-17. Part A, 1994, № 4, pp.616-624].

Однако для электроконтактного применения он имеет существенный недостаток - отсутствие в его составе дугогасящих и упрочняющих медную матрицу добавок, что снижает эрозионную стойкость как в дуговом режиме, так и при искрении в скользящих контактах. В то же время, введение металлического кадмия на стадии смешивания порошков в данном случае исключается вследствие невозможности дальнейшей глубокой обработки давлением такого материала. Другая известная форма - добавка кадмия в виде оксида, также в данном материале неприемлема из-за более низкой термодинамической прочности этого оксида по сравнению с оксидами металлов-добавок, которые в процессе термообработки окисляются, восстанавливая CdO.

Наиболее близким техническим решением, выбранным в качестве прототипа, является техническое решение, описанное в патенте [RU № 2122039, С22С 9/00, Н01Н 1/02, опубл. 20.11.1998]. Порошковые композиционные электроконтактные материалы для контакт-деталей электроаппаратуры на основе меди, содержащие одновременно нерастворимый в меди тугоплавкий металл ниобий и легкоплавкий кадмий, также производят методом порошковой металлургии, смешивая одновременно все исходные ингредиенты, взятые в виде порошков, которые далее прессуют в стальной пресс-форме в виде заготовок требуемой формы и размеров, спекают в инертной среде, уплотняют допрессовкой и отжигают для снятия механических напряжений.

Однако такой способ не обеспечивает получения беспористого композита (остаточная пористость обычно составляет 2-3% и более) с плотными границами Cu/Cu и Cu/Nb, что негативно сказывается на всех функциональных свойствах материала и, в особенности, на работоспособности разрывных контактных элементов в условиях многоцикловых ударных нагрузок. Такие контакты обычно не выдерживают требуемого числа рабочих циклов.

Задачей изобретения является улучшение эксплуатационных характеристик электроконтактных изделий на основе меди, содержащих ниобий и кадмий, в частности, улучшение эрозионных характеристик и снижение переходного сопротивления на основе создания беспористого порошкового композита Cu-Cd/Nb с волокнистой микроструктурой.

Таким образом, технический результат, получаемый в результате использования предлагаемого изобретения, состоит в понижении переходного сопротивления в контактной паре, повышении электроэрозионной стойкости, а также в возрастании длительной механической прочности в режимах многоцикловых ударных нагрузок и стойкости против сваривания.

Технический результат достигается тем, что в способе изготовления порошкового композита Cu-Cd/Nb для электроконтактного применения, включающем получение шихты смешиванием порошковых ингредиентов, холодным прессованием, спеканием, уплотнением допрессовкой и отжигом, новым является то, что шихту готовят из порошков меди и ниобия, спеченную заготовку подвергают глубокой обработке давлением, причем глубокую обработку давлением сочетают с горячей экструзией спеченной объемной заготовки с последующей холодной прокаткой или вытяжкой, а введение кадмия в заготовки осуществляют диффузионным насыщением, путем их выдержки в атмосфере, содержащей пар кадмия.

Суть предложения состоит в том, что композит Cu-Cd/Nb для электроконтактного применения, имеющий высокодисперсную, волокнистую микроструктуру (волокна ниобия в матрице из кадмиевой бронзы) получают глубокой обработкой давлением (горячая экструзия, волочение, прокатка) бескадмиевого порошкового композита Cu/Nb, создавая при этом требуемую микроструктуру - волокна ниобия в медной матрице, которая образуется вследствие близости прочностных свойств этих металлов. Далее, в заготовки изделий вводят кадмий путем их экспонирования в газовой среде, содержащей пар этого легколетучего компонента.

Наличие в составе тугоплавкого металла ниобия необходимо для снижения электродугового и электроискрового износа, а также переходного сопротивления в контактной паре. Наличие кадмия усиливает дугогасящие свойства материала и упрочняет медную основу, что повышает стойкость против сваривания. Образование тонкодисперсной волокнистой структуры после глубокой обработки давлением способствует усилению указанных свойств и, дополнительно, существенному росту длительной прочности материала в условиях многоцикловых ударных нагрузок в процессе службы контактных изделий.

От прототипа заявляемый способ отличается тем, что

- шихту готовят из порошков меди и ниобия;

- спеченная заготовка подвергается глубокой обработке давлением для создания высокодисперсной, волокнистой микроструктуры;

- введение кадмия в заготовки с целевой микроструктурой осуществляется диффузионным насыщением, путем их выдержки в атмосфере, содержащей пар кадмия.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Для осуществления предлагаемого способа получения электроконтактов исходные порошковые компоненты - медь и ниобий, взятые в пропорции 9:1, перемешивают в смесителе в течение часа. Далее шихту подвергают двухстороннему прессованию в стальной пресс-форме при давлении 300 МПа. Прессовку спекают при температуре 900°С в течение двух часов в среде аргона, в результате чего получают спеченную заготовку диаметром около 60 мм. Заготовку подвергают горячей экструзии с получением полосы сечением 5×25 мм для максимального снижения остаточной пористости и формирования волокнистой микроструктуры псевдосплава, а затем холодной прокатке до толщины 2 мм. Далее штамповкой получают контакт-детали способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 8-10×2 мм. Введение кадмия проводят из паровой фазы при температуре 900°С до содержания кадмия в готовых контакт-деталях 1,0способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 1,2%. Часть образцов не кадмируют для сравнительного тестирования (в таблице 1 они обозначены - X).

После завершения всех технологических операций плотность готовых контактов составляет 8,8способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 8,82 г/см3, твердость НВ=80-85, удельное сопротивление 3,2способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 3,4 мкОм·см.

Для сравнительных испытаний также были изготовлены образцы из материала такого же состава, как и предлагаемый, но с использованием способа-прототипа, т.е. не подвергнутых глубокой обработке давлением. Контактные элементы в симметричных парах протестированы на лабораторном стенде по коммутационной износостойкости на переменном токе и переходному падению напряжения в процессе ее измерений. Условия испытаний: I=30 A, U=380 В, cosспособ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 =0,8, количество циклов вкл/откл - 10000. Падение напряжения - среднее из 15-30 измерений. Измерена также твердость материалов по Бринеллю. Результаты испытаний приведены в таблице 1.

Таблица 1.
Результаты измерений свойств электроконтактных материалов
Способ и материал Коммутационный износ, г/цикл*10 6Падение напряжения, мВТвердость, НВ
Подвижный контакт Неподвижный контакт
Прототип 8,88,6 51560способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 65
Предлагаемый 5,44,2320 80способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 85
Х 12,311,7445 97способ изготовления порошкового композита сu-cd/nb для электроконтактного   применения, патент № 2516236 102

Как показывают результаты измерений, контакт-детали, изготовленные по предлагаемому способу, обладают более низкими значениями электроэрозионного износа и переходного сопротивления. Видно, что важное значение для служебных свойств имеет как композиционная волокнистая микроструктура, так и наличие дугогасящей добавки в материале. Более высокая твердость бескадмиевого материала (X) вызвана отсутствием термического отжига после обработки давлением.

Применение разрывных и скользящих электроконтактов, изготовленных по предлагаемому способу, позволит повысить надежность и долговечность соответствующих коммутационных узлов.

Класс C22C1/04 порошковой металлургией

способ получения алюминиевого композиционного материала с ультрамелкозернистой структурой -  патент 2529609 (27.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него -  патент 2516681 (20.05.2014)
способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов -  патент 2516271 (20.05.2014)
способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов -  патент 2516267 (20.05.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов -  патент 2501873 (20.12.2013)
способ получения композиционного материала из металлических порошков с заданным физико-механическим свойством -  патент 2499066 (20.11.2013)

Класс H01H1/025 с медью в качестве основного материала

Класс C22C9/00 Сплавы на основе меди

Наверх