способ измерения температуры режущего инструмента
Классы МПК: | B23Q11/10 средства для охлаждения или смазки режущих инструментов или обрабатываемых изделий (встроенные в инструменты, см в соответствующих подклассах, к которым отнесены инструменты) |
Автор(ы): | Липатов Е.К., Барбышев Б.В., Грохотова В.А. |
Патентообладатель(и): | Тюменский индустриальный институт |
Приоритеты: |
подача заявки:
1991-07-01 публикация патента:
30.03.1994 |
Использование: в обработке металлов резанием, преимущественно высоколегированных сплавов, а также деталей, восстановленных износостойкими покрытиями. Сущность изобретения: на измеряемую поверхность режущего инструмента 7 наносят хладагент. Участок поверхности инструмента с нанесенным хладагентом вводят в зону расположения мембраны 3, которая посредством стержня 4 соединена с пьезорезонансным датчиком ускорения 5. Перед подводом указанного участка к мембране 3 каплю хладагента нагревают до температуры кипения посредством ее контакта с нагретой поверхностью режущего инструмента 7. В зоне расположения мембраны 3 капля хладагента испаряется. Под действием образовавшегося пара мембрана 3 перемещается с ускорением, зависящим от температуры нагрева поверхности режущего инструмента 7. Величину ускорения мембраны 3 измеряют посредством пьезорезонансного датчика 5, а затем сравнивают с тарировочными данными и определяют фактическую температуру режущего инструмента. 1 ил.
Рисунок 1
Формула изобретения
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ РЕЖУЩЕГО ИНСТРУМЕНТА , котоpую опpеделяют посpедством чувствительного элемента, пpи этом на измеpяемую повеpхность наносят хладагент, котоpый испаpяется, отличающийся тем, что в качестве чувствительного элемента используют мембpану, пpи этом в зону последней вводят участок повеpхности инстpумента с хладагентом, а мембpане сообщают пеpемещение посpедством упомянутого испаpения хладагента, после чего измеpяют ускоpение мембpаны, величину котоpого сpавнивают с таpиpовочными данными, а затем опpеделяют темпеpатуpу pежущего инстpумента.Описание изобретения к патенту
Изобретение относится к обработке металлов резанием и преимущественно может быть использовано при обработке высоколегированных сплавов, а также деталей, восстановленных износостойкими покрытиями. Известен пневматический метод измерения температуры в твердых телах [1] . Согласно этому способу измерения в режущем инструменте просверливают тонкое сквозное отверстие, через которое под давлением подают сжатый воздух и контролируют температуру по перепаду давления воздуха на входе и выходе из отверстия. Основной недостаток известного способа измерения - разрушение зубьев фрезы из-за наличия просверленного отверстия. Известен способ измерения температуры на поверхности режущего инструмента посредством нанесения на объект измерения термонидикаторной краски [2] . Недостатки известного способа контроля температуры - низкая точность измерения и сложность аппаратуры для наблюдения за изменением цветов краски. Наиболее близким по технической сущности и достигаемому результату к заявляемому решению является способ измерения температуры режущего инструмента с нанесением хладагента на измеряемую поверхность инструмента с последующим измерением температуры посредством термопары [3] . Недостаток известного способа измерения заключается в том, что они не обеспечивают высокой точности измерения температуры. Это объясняется тем, что термопара находится в контакте с поверхностью зуба фрезы незначительное время, которое недостаточно для нагрева спаев термопары до температуры, соответствующей температуре режущего инструмента. Такое явление обусловлено влиянием тепловой инерции. Цель изобретения - повышение точности измерения температуры режущего инструмента за счет контроля ускорения мембраны при испарении хладагента. Поставленная цель достигается тем, что в способе, заключающемся в нанесении хладагента на измеряемую поверхность режущего инструмента, участок поверхности с нанесенным хладагентом вводят в зону расположения мембраны, которую приводят в движение посредством парообразования хладагента. Измеряют ускорение мембраны посредством датчика, и на основе сравнения величины измеренного ускорения с тарировочными данными определяют температуру режущего инструмента. Хладагент в качестве испаряющейся жидкости применяют в связи с малым временем испарения. При попадании капли хладагента на измеряемую поверхность инструмента она деформируется при увеличении диаметра. При этом капля хладагента получает от нагретой поверхности инструмента теплоту, посредством которой она нагревается до температуры насыщения (
tн=



d - диаметр капли, м;






tи - время испарения капли после достижения температуры насыщения, оС;


m - отношение диаметра деформированной капли (D) к диаметру капли (d), т. е. m = D/d,
tи - время испарения капли после достижения температуры насыщения, С. В формуле (2) для определения



a =




По сравнению с прототипом применение заявляемого способа измерения температуры режущего инструмента обеспечивает повышение точности измерения на менее чем в три раза; снижение себестоимости обработки деталей на 28% . Данные получены на основе экспериментов и выполненных расчетов. (56) 1. Авторское свидетельство СССР N 630054, кл. В 23 Q 15/00, 1976. 2. Авторское свидетельство СССР N 1312408, кл. G 01 K 13/06, 1976. 3. Авторское свидетельство СССР N 1491658, кл. В 23 Q 11/10, 1987.
Класс B23Q11/10 средства для охлаждения или смазки режущих инструментов или обрабатываемых изделий (встроенные в инструменты, см в соответствующих подклассах, к которым отнесены инструменты)