способ бесконтактного определения характеристик кремниевых пластин с внутренним геттером
Классы МПК: | H01L21/66 испытания или измерения в процессе изготовления или обработки |
Автор(ы): | Эйдельман Б.Л., Короткевич А.В., Никитин В.А. |
Патентообладатель(и): | Научно-производственное предприятие "Сиапс" |
Приоритеты: |
подача заявки:
1991-12-24 публикация патента:
15.03.1994 |
Использование: изобретение относится к микроэлектронике и может быть использовано для контроля качества подготовки кремниевых пластин с внутренним оксидным геттером. Сущность изобретения: способ позволяет контролировать ширину приповерхностной бездефектной зоны в кремниевых пластин, например, p- и n-типа проводимости за счет освещения ее импульсами ИК-света с объемным поглощением квантов и импульсами света видимого или ультрафиолетового диапазона длительностью не более 30 нс с поверхностным поглощением квантов, регистрации кривых спада фотопроводимости после окончания действия каждого импульса света, определении на нормированных кривых эквивалентных участков с постоянной времени спада, вычислением временной задержки между эквивалентными участками и определении ширины бездефектной зоны расчетным путем. 3 ил. , 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
1. СПОСОБ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК КРЕМНИЕВЫХ ПЛАСТИН С ВНУТРЕННИМ ГЕТТЕРОМ, включающий облучение пластины импульсом света ИК-диапазона с объемным поглощением квантов, измерение проводимости пластины СВЧ-способом, регистрацию кривой спада фотопроводимости по окончании импульсов ИК-света и определение характеристик геттера расчетным путем, отличающийся тем, что после регистрации кривая спада фотопроводимости по окончании импульса ИК-света пластину облучают импульсом света видимого или УФ-диапазона, регистрируют соответствующую кривую спада фотопроводимости, нормируют обе кривые, определяют эквивалентные участки на этих кривых, определяют временную задержку t между этими участками, а в качестве характеристики рассчитывают ширину d бездефектной зоны геттера по формуле d = 1,24, а при d



Описание изобретения к патенту
Изобретение относится к микроэлектронике и может быть использовано для определения качества подготовки пластин кремния с внутренним оксидным геттером, используемых при производстве ИС и полупроводниковых приборов. Внутренний оксидный геттер применяется для снижения дефектности приповерхностных областей кремниевых полупроводниковых структур, где осуществляется формирование активных элементов приборов, и удаления из этих областей в объем пластин нежелательных загрязняющих примесей быстродиффундирующих металлов (например, Fe, Cr, Cu, Au, Ni и др. ). Внутренний оксидный геттер образуется за счет распада пересыщенного твердого раствора кислорода в кремнии, выращенного методом Чохральского [1] в процессе длительных термообработок. При этом в объеме пластины формируются преципитаты SiO2, окруженные призматическими дислокационными петлями или дефектами упаковки, а из приповерхностных областей кислород диффундирует на поверхность пластины, оставляя бездефектную зону. Размер этой зоны оказывает определенное влияние на качество и характеристики полупроводниковых приборов и зависит от исходной концентрации кислорода в кремнии, температуры и длительности проведения термообработок. Известен способ контроля характеристик внутреннего оксидного геттера путем селективного химического травления поперечного скола пластины [2] . При этом визуально под микроскопом определяется и концентрация дефектов в объеме пластины и ширина бездефектной зоны у поверхности. Недостатком этого способа является его разрушающий характер и использование агрессивных веществ в составе селективного травителя. Можно контролировать бездефектную зону по профилю концентрации кислорода, получаемому с помощью вторично-ионной масс-спектрометрии [3] . Однако этот способ тоже является разрушающим и требует наличия дорогостоящего прецизионного оборудования. Известен способ оценки качества бездефектной зоны по времени жизни неосновных носителей заряда, измеряемому на тестовых МОП-конденсаторах [4] . Недостатком этого способа является невозможность одновременного определения ширины бездефектной зоны и плотности преципитатов во внутреннем геттере, необходимость формирования МОП-структур (что делает пластины непригодными для дальнейшего использования, если эти пластины должны контролироваться на начальных этапах производства ИС) и проведения зондовых (контактных) измерений. Бесконтактное определение ширины бездефектной зоны и плотности дефектов в объеме внутреннего геттера осуществляется рентгеновской секционной топографией [5] . При таком способе контроля параметры внутреннего геттера можно определить фотографическими методами. Недостатком способа является высокая стоимость прецизионного рентгеновского оборудования и длительность проведения контроля (от одного до нескольких часов), что делает неприемлемым его использование в массовом производственном контроле. Кроме того, особенности формирования рентгенотопографического контраста приводят к большим погрешностям в определении бездефектной зоны. Прототипом заявляемого изобретения является способ контроля мощности внутреннего геттера, основанный на измерении спада фотопроводимости бесконтактным методом СВЧ-релаксометрии [6] . Согласно этому способу при измерении спада фотопроводимости после импульсного ИК-фотовозбуждения выделяются быстрая и медленная составляющие спада фотопроводимости; по медленной составляющей определяется концентрация уровней прилипания, а затем по этой величине вычисляются плотность преципитатов SiO2 в объеме пластины. Заявляемое изобретение направлено на расширение функциональных возможностей способа определения характеристик внутреннего геттера за счет обеспечения контроля ширины приповерхностной бездефектной зоны в пластинах, например, кремния p- и n-типа проводимости. Для достижения указанного технического результата в способе, включающем размещение исследуемой пластины в СВЧ-регистрирующем устройстве и облучение ее импульсами света, пластину освещают импульсами света ближнего ИК-диапазона, обеспечивающими объемное поглощение квантов, фиксируют кривую спада фотопроводимости после окончания действия импульса света, затем освещают импульсами света видимого или ультрафиолетового диапазона, обеспечивающими поглощение квантов на поверхности пластины, фиксируют кривую спада фотопроводимости после окончания действия импульса света, нормируют обеи кривые, выделяют на кривой спада фотопроводимости после облучения импульсами света видимого или ультрафиолетового диапазона участок с постоянной спада фотопроводимости, равной постоянной спада на кривой спада фотопроводимости после облучения импульсами света ИК-диапазона, определяют временную задержку между аналогичными участками на обеих кривых спада фотопроводимости t и вычисляют ширину бездефектной зоны L по формулеL = 1,24

L = 1,24




t

D - коэффициент амбиполярной диффузии неравновесных носителей заряда. Следовательно, используя выявленную зависимость, можно вычислить ширину бездефектной области, определяя величину задержки t. На достоверность получаемых результатов будет оказывать влияние несколько факторов, включая скорость поверхностной рекомбинации и длительность импульса фотовозбуждения. Если скорость поверхностной рекомбинации велика, то большинство неравновесных носителей заряда при поверхностном фотовозбуждении будет гибнуть уже в бездефектной зоне и разделить быстрый спад от поверхностной и объемной рекомбинации становится сложнее. В результате величина задержки t будет снижаться. Этого не происходит в тех случаях, когда скорость поверхностной рекомбинации сведена к минимуму, например, при наличии термического окисла на поверхности, который практически всегда возникает на поверхности пластин при формировании внутреннего геттера, или при проведении измерений в растворе плавиковой кислоты. Существенное влияние на точность измерений оказывает и длительность импульса при поверхностном фотовозбуждении. Если импульс имеет большую длительность, то за время его действия носители могут успеть пробежать бездефектную зону и тогда процесс релаксации фотопроводимости не будет отличаться от случая объемного фотовозбуждения импульсом ИК-света. Для того, чтобы уменьшить погрешности, связанные с длительностью импульса необходимо увеличить время t на величину tn/2. Эта добавка оказывает существенное влияние в случае малых значений ширины бездефектной зоны и практически незначима при больших значениях этой ширины. Поэтому для повышения точности измерения ширины бездефектной зоны длительность импульса при поверхностном фотовозбуждении не должна превышать 30 нс. При исследовании спада фотопроводимости, например, в пластинах кремния р-типа проводимости на кривой спада, представленной в логарифмических координатах (фиг. 3), можно выделить два участка: первоначальный быстрый спад с постоянной времени спада на уровне нескольких микросекунд и последующий медленный спад с постоянной времени спада на уровне нескольких десятков и сотен микросекунд. Медленная составляющая спада связана с наличием преципитатов в объеме пластины кремния, которые действуют как центры прилипания для электронов. Оставшиеся в объеме дырки не могут рекомбинировать, пока электроны не высвободятся из потенциальной ямы вблизи преципитатов SiO2. Захват электронов на центры прилипания происходит все время, пока концентрация избыточных носителей заряда превышает концентрацию центров прилипания или емкость потенциальной ямы. Поскольку в сильно дефектной области внутреннего геттера время жизни неравновесных носителей заряда очень мало (< 1 мкс), а его объем значительно превышает объем приповерхностной бездефектной области, где время жизни неравновесных носителей заряда значительно выше (> 10 мкс), то можно считать, что в момент перехода от быстрой рекомбинации к медленному высвобождению залипших на центрах прилипания электронов никаких других неравновесных носителей заряда в объеме пластины, включая бездефектную зону, не осталось. При поверхностном фотовозбуждении точка перехода от быстрого спада к медленному будет смещена по временной шкале на время задержания t по отношению к случаю объемного фотовозбуждения ИК-светом. Но при этом точность определения времени задержки t значительно выше, поскольку на результат не влияет точность выбора участков на кривых спада фотопроводимости с одинаковыми постоянными спада. Пример определения времени задержки t в пластинах кремния р-типа с внутренним геттером показан на фиг. 3. Для определения точек перехода t1 и t2 кривую спада нормируют, переводят в логарифмические координаты и аппроксимируют быстрый и медленный участки спада прямыми линиями, точки пересечения которых и показывают положение на временной шкале времени t1 и t2. Заявляемый способ был осуществлен с использованием устройства (фиг. 1) на серии образцов кремния n-типа с удельным сопротивлением 4,5 Ом


Класс H01L21/66 испытания или измерения в процессе изготовления или обработки