способ сжигания малореакционного пылевидного топлива и устройство для его осуществления
Классы МПК: | F23K1/00 Подготовка кускового или пылевидного топлива для подачи в устройства для сжигания |
Автор(ы): | Варанкин Г.Ю., Носихин В.Л., Тажиев Э.И., Корнев В.А., Зуев О.Г., Чернышев Е.В. |
Патентообладатель(и): | Варанкин Геннадий Юрьевич |
Приоритеты: |
подача заявки:
1991-03-04 публикация патента:
15.03.1994 |
Использование: на тепловых электростанциях в технологических и относительных котельных при реконструкции действующего и разработке перспективного экологически чистого котельного оборудования. Сущность изобретения: применение четырехступенчатого сжигания топлив в камере сгорания с повышением времени для протекания реакций восстановления NO в N и одновременным использованием образуемой восстановительной среды для снижения температуры плавления шлака и улучшения его текучести 2 с. и 5 з. п. ф-лы, 6 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6
Формула изобретения
1. Способ сжигания малореакционного пылевидного топлива путем ввода аэросмеси и вторичного воздуха в зону горения основного топлива и сбросного воздуха и подачи дополнительного воздуха в зону третичного горения, отличающийся тем, что, с целью снижения выброса NOx в дымовых газах, повышения надежности и экономичности путем более полного восстановления оксида азота в молекулярный азот, предотвращения зашлаковывания леток для удаления жидкого шлака и снижения недожога и других тепловых потерь, часть вспомогательного топлива дополнительно вводят под зону горения основного топлива в соответствии с дополнительным воздухом ниже стехиометрического значения, а оставшуюся часть вспомогательного топлива подают в зону вторичного горения и вводят встречно в продукты сгорания основного топлива без предварительного перемещения со сбросным воздухом. 2. Способ по п. 1, отличающийся тем, что дополнительный воздух вводят в зону третичного горения вертикальными тангенциальными струями. 3. Устройство для сжигания малореакционного пылевидного топлива, содержащее котел с вертикальной экранированной камерой сгорания, имеющей в нижней части под с летками для удаления жидкого шлака, обрамленную двумя боковыми, фронтальной и задней стенками со скосами на них, образующими пережим, и установленные ярусами на фронтальной и задней стенках основные пылеугольные и вспомогательные сбросные горелки соответственно ниже и выше пережима, и воздушные сопла дополнительного горячего воздуха, установленные над вспомогательными горелками, причем основные горелки подключены к воздуховодами горячего воздуха и пылепроводам концентрированной пыли, а вспомогательные горелки - к воздуховодам сбросного воздуха отработанного и обеспыленного сушильного агента пылесистемы котла и к трубопроводам вспомогательного топлива, подведенного к встроенным в эти горелки соплам, отличающаяся тем, что, с целью снижения выбросов NOx в дымовых газах, повышения надежности и экономичности путем более полного восстановления оксида азота в молекулярный азот, устранения зашлаковывания леток и снижения недожога твердого топлива и других тепловых потерь, на фронтальной и задней стенках камеры в ярусе, расположенном под нижним ярусом основных горелок и между ними установлены дополнительные горелки вспомогательного топлива, наклоненные под углом к поду камеры и ориентированные по осям, направленным в центры леток. 4. Устройство по п. 3, отличающееся тем, что вспомогательные сбросные горелки выполнены щелевыми и установлены большими сторонами горизонтально, причем встроенные в них сопла вспомогательного топлива направлены параллельно верхним скосам фронтальной и задней стенкой камеры и установлены в рассечку по отношению друг к другу в противоположных горелках, а каналы сбросного воздуха направлены под углом к этим скосам. 5. Устройство по пп. 3 и 4, отличающееся тем, что между соплами вспомогательных горелок и дополнительными горелками установлена перемычка, снабженная запорно-регулирующим органом, расположенным на участке подключения этой перемычки к трубопроводу вспомогательного топлива. 6. Устройство по пп. 3 - 5, отличающееся тем, что воздушные сопла дополнительного воздуха выполнены в виде вертикально установленных щелей, ориентированных тангенциально поверхности условного вертикального цилиндра, расположенного в верхней части камеры сгорания. 7. Устройство по пп. 3 - 6, отличающееся тем, что у выходных срезов основных вихревых горелок по их наружным образующим установлены дополнительные сопла, сообщенные трубопроводами с источником горючего газа-восстановителя NO в N2.Описание изобретения к патенту
Изобретение относится к сжиганию твердых топлив (преимущественно в малым содержанием летучих веществ) в топках с жидким шлакоудалением и может быть применено на тепловых электростанциях, в технологических и отопительных котельных для реконструкции действующего и разработки перспективного экологически чистого котельного оборудования. Известен способ сжигания малореакционного пылевидного топлива, заключающийся в том, что топливо пылепотоками высокой концентрации вводят в пылеугольные горелки, перемешивают в них с первичным воздухом и полученную аэросмесь и вторичный воздух вводят в зону горения, расположенную в экранированной камере сгорания топки в ЖШУ и пережимом, расположенным над горелками. Отработанный воздух пылесистем после обеспыливания вводят в топку через сбросные сопла, расположенные над основными горелками, в последних также предусмотрена возможность подачи вспомогательного топлива, например мазута по оси горелок, оборудованных дополнительным каналом по центру для установки мазутной форсунки и подачей к ней дополнительного центрального воздуха [ 1] . Данный аналог имеет недостаточные надежность работы системы ЖШУ с зашлаковыванием леток для удаления жидкого шлака и экономичность - из-за недожога топлива, а также повышенное (1-2 г/м3) содержание NOх в дымовых газах вследствие отсутствия их подавления. Преимуществом аналога [1] является применение системы подачи пыли высокой концентрации (ППВК), за счет чего уменьшена металлоемкость системы дозирования и транспорта пыли, снижены расход электроэнергии на собственные нужды и тепловые потери в окружающую среду. Известны также способы подготовки твердого топлива к сжиганию путем деления топлива на основной и вспомогательный потоки, сжигания последнего в режиме газификации с последующим дожиганием полученных твердых продуктов с избытком воздуха, подачей образованных при этом дымовых газов независимым потоком в камеру сгорания, нагрева основного потока газообразными продуктами, полученными при сжигании вспомогательного потока, и подачи основного потока в виде пылегазовой смеси в камеру сгорания [ 2 ] . Недостатками аналога [2] является ограниченная возможность его применения для малореактивных топлив с низким выходом летучих веществ из-за малой интенсивности и производительности процесса газификации этих топлив, неустойчивости горения топлива при относительно низкой температуре в кипящем слое и шлакования в случае ее повышения. Устройству присущи сложность предложенной конструкции, повышенные габариты и металлоемкость и низкая надежность с сопутствующим ростом эксплуатационных затрат на расшлаковку и ремонты с недовыработкой энергии, а также повышенный недожог топлива в отдимой золе. Вследствие указанных недостатков данный способ неэффективен и для снижения NOх при сжигании малореакционного твердого топлива. Известен также способ подготовки твердого топлива к сжиганию и устройство для его осуществления, [3] . Способом предусмотрен ввод угольной пыли струей концентрированной аэросмеси в цилиндрическую камеру термообрабтки с образованием вокруг струи аэросмеси угольной пыли вихревого движения горящего высокореакционного топлива (мазута) с выделением летучих легковоспламеняемых веществ в результате нагрева угольной пыли. Эти вещества при выходе в камеру сгорания с прогретой массой пыли переме- шиваются со вторичным воздухом и сгорания выделяют тепло, необходимое для стабильного сжигания угля в топке котла. Аналогу [3] присущи низкая надежность вследствие перегрева неохлаждаемых стенок камеры термообработки мазутным факелом (до 2000оС), оплавление отдельных частиц пыли при непосредственном контакте с высокотемпературным мазутным факелом и их налипание на стенки устройства и амбразуру с их зашлаковыванием, а также интенсивное образование NOхпри высокотемпературном сжигании вспомогательного топлива с

- дополнительный ввод части сжигаемого вспомогательного топлива под зону горения основного топлива в соотношении с дополнительным воздухом ниже стехиометрического значения;
- ввод оставшейся (второй) части вспомогательного топлива встречно в продукты сгорания основного топлива при выходе их из зоны горения без предварительного перемешивания со сбросным воздухом и путем равномерного распределения восстановительной среды в узком сечении пережима;
- ввод сбросного воздуха в образованную смесь продуктов сгорания основного и второй части вспомогательного топлива;
- тангенциальная подача дополнительного воздуха в зону третичного горения с образованием вертикального вихревого потока дожигания продуктов неполного сгорания;
- оптимизация процесса сжигания по минимальному содержанию NOхв дымовых газах одновременно с обеспечением надежного удаления жидкого шлака, путем установки оптимального соотношения частей вспомогательного топлива, введенных под зону основного горения и в зону вторичного горения и восстановления NO в N2;
- дополнительный ввод, от постороннего источника, газа-восстановителя (например, СО) в зону горения основного топлива по периферии образованных в ней факелов в случае, если достигнутый минимум концентрации NOх в дымовых газах превышает нормативное значение на ПДВ, в количестве, обеспечивающем достижение последнего. Существенными отличиями предлагаемого устройства для осуществления заявляемого способа и достижения поставленной цели изобретения является то, что:
- между основными вихревыми горелками, в ярусе, расположенном под нижних их ярусом, установлены дополнительные горелки вспомогательного топлива, наклоненные к поду камеры - под углом к горизонту, и ориентированные по осям, условные продолжения которых направлены в центры леток;
- вспомогательные сбросные горелки выполнены щелевыми (прямоточными) и установлены большими сторонами горизонтально, причем встроенные в них сопла вспомогательного топлива направлены параллельно верхних скосам стенок, образующих пережим, и установлены в рассечку по отношению друг к другу в горелках на фронтовой и задней стенах камеры, а каналы сбросного воздуха направлены под углом к скосам;
- между соплами и дополнительными горелками вспомогательного топлива установлен дополнительно раздающий трубопровод (перемычка), снабженный запорно-регу- лирующим органом соотношения расходов вспомогательного топлива, расположенным на участке подключения этой перемычки к трубопроводу вспомогательного топлива;
- воздушные сопла дополнительного воздуха зоны третичного горения выполнены в виде вертикально установленных щелей, ориентированных тангенциально поверхности условного вертикального цилиндра, расположенного в верхней части камеры сгорания;
- в выходных срезах основных вихревых горелок по их наружным образующим установлены дополнительные сопла, подключенные к постороннему источнику горючего газа-восстановителя NO в N2. На фиг. 1 приведена схема устройства для осуществления предлагаемого способа - продольный разрез; на фиг. 2 и 3 поперечные разрезы А-А и Б-Б, на фиг. 1; на фиг. 4,5 и 6 разрезы В-В, Г-Г и Д-Д, соответственно, обозначенные на фиг. 1. Устройство для сжигания малореакционного пылевидного топлива содержит вертикальную и экранированную камеру 1 сгорания котла, обрамленную двумя боковыми стенками 2, фронтовой и задней стенками 3 и 4 соответственно, и подом 5 с летками 6 системы ЖШУ. Камера 1 имеет сужение сечения - пережим 7, образованный скосами 8 на стенках 3, 4 в области пережима 7 и зажигательный пояс (на чертежах не показан) под пережимом 7 и снабжена последовательно расположенными снизу вверх на фронтовой 3 и задней 4 стенках: дополнительными прямоточными горелками 9 вспомогательного топлива, основными пылеугольными вихревыми горелками 10 и вспомогательными (сбросными) горелками 11, включающими сопла 12, вспомогательного топлива, установленные в горизонтальных, щелевых (прямоточных) каналах 13 сбросного воздуха. Над горелками 11, по углам камеры 1 и тангенциально к поверхности условного цилиндра 14 установлены воздушные сопла 15, выполненные в виде вертикальных (прямоточных) щелей, к которым подключены патрубки 16 ввода горячего воздуха (см. фиг. 4). К основным горелкам 10 подключены пылепроводы 17 концентрированной аэросмеси малореакционнгого пылевидного (основного) топлива, патрубки 18 и 19 первичного и вторичного воздуха, и патрубки 20 горючего газа-восстановителя NO в N2 (например, СО), подключенные к дополнительным соплам 21, установленным у выходных срезов 22 основных горелок 10 по их наружным образующим. Патрубки 20 соединены трубопроводами с посторонним источником газа-восстановителя (например, газогенератором или газгольдером) - не показаны. К дополнительным горелкам 9 патрубками 23 и 24 подведены, соответственно, вспомогательное топливо и горячий воздух. К каналам 13 горелок 11 подсоединены патрубки 25 сбросного обеспыленного воздуха отработанного сушильного агента пылесистем, а к соплам 12 - патрубки 26 вспомогательного топлива. Патрубки 23 и 26 вспомогательного топлива сопл 12 и горелок 9, на стенах 3 и 4 камеры, соединены перемычкой 27, снабженной запорно-регулирующим органом 29 соотношения расхода вспомогательного топлива, установленным на участке подключения перемычки 27 к трубопроводу 29 вспомогательного топлива. Дополнительыне горелки 9 вспомогательного топлива расположены в ярусе, лежащем под нижним ярусом основных горелок 10 (на чертежах показана одноярусная компоновка горелок 10, но может быть применима и многоярусная) и между ними, а кроме того, наклонены к поду 5 камеры 1 - под углом к горизонту и ориентированы по осям, условные продолжения которых направлены в центры леток 6 (см. также фиг. 6). Основные горелки 10 установлены горизонтально, а направления их круток (при виде из камеры 1 сгорания) обозначены стрелками под горелками на фиг. 2 и 3. Сопла 12 горелок 11 размещены в рассечку (перчаточно) на противоположных стенках 3 и 4 камеры 1 (см. фиг. 2, 3 и 5) и направлены по осям, условные продолжения которых параллельны верхним скосам 8, образующим пережим 7, и пересекаются между собой и с вертикальной осью камеры 1 в центре пережима 7 (при виде в продольном вертикальном разрезе на фиг. 1). В плане их оси параллельны боковым стенкам 2 (см. фиг. 5). При этом каналы 13 сбросного воздуха горелок 11 направлены под углом к скосам 8 (и следовательно, под меньшим углом к горизонту, чем сопла 12) и условные продолжения осей каналов 13 пересекаются между собой и с вертикальной осью камеры 1 (на фиг. 1), в точке, лежащей выше точки пересечения осей сопл 12. Способ сжигания малореакционного пылевидного топлива осуществляется в приведенном устройстве следующим образом. Угольную пыль транспортирующим воздухом, при высокой концентрации пыли, из системы пылеприготовления котла по пылепроводам 17 подают в горелки 10, а по патрубкам 18 и 19 подводят горячий воздух. Распыленная и перемешанная с первичным воздухом аэросмесь и вторичный воздух поступают закрученными потоками из вихревых горелок 10 в зону горения основного топлива камеры 1, образованную ими, аэросмесь воспламеняется и сгорает, по мере смешения с вторичным воздухом при избытке воздуха в горелках 10


СН4+2О2 ->СО2+2Н2О+q1 (1)
СН4+1/2О2 ->СО+2Н2+q2 (2) где q1 и q2 - тепло, выделяемое при реакции полного (1) и неполного (2) сгорания газа. Выделенным теплом q1 и q2 ускоряют и стабилизируют воспламенение и выгорание малореакционного топлива в зоне основного горения, снижают недожог топлива в провале (содержание горючих в шлаке), уже этим обеспечивают одновременно повышение текучести шлака и надежности жидкого шлакоудаления. Сверхсуммарным эффектом является одновременное использование восстановительной среды (СО и Н2) для снижения как оксидов азота в зоне горения основного топлива, путем их восстановления в N2, так и улучшения температурных (плавкостных) характеристик шлака в восстановительной среде продуктов неполного сгорания вспомогательного топлива (см. , например, [ 6] , с. 63). Благодаря повышению текучести шлака, при более низкой температуре отводимого шлака, могут быть дополнительно снижены тепловые потери с отводимым шлаком. Наибольшую эффективность данных процессов обеспечивают направлением горелок 9 в центры леток 6 и установкой горелок 9 под нижним ярусом горелок 10 и между ними с использованием результирующего поля скоростей при взаимодействии вихревых потоков горелок 10 со сложением (вычитанием) тангенциальных составляющих скоростей потоков. Подведенные в зону горения основного топлива газы-восстановители (СО, Н2 и несгоревший СН4) вступают в реакции восстановления с образованным в этой зоне NO, являющимся также окислителем. Реакции восстановления протекают по уравнениям:
2NO+2СО ->2СО2+N2+q3 (3)
2NO+2Н2 ->2Н2О+N2+q4 (4)
4NO+СН4 ->СО2+2Н2О+q5 (5) где q3, q4 и q5 - тепловые эффекты от восстановления NO в N2газами-восстановителями. Сравнение уравнений (3), (4) и (5) показывает, что наибольшую эффективность восстановления имеет природный газ - метан (СН4), одна молекула которого восстанавливает 4 молекулы NO с выходом двух молекул N2. Однако скорость реакции горения (окисления) природного газа с кислородом воздуха (см. уравнение (1) или (2) ) намного выше, чем с NO, в результате этого СН4 раньше сгорает, вступая в реакцию горения, чем в реакцию восстановления NO. Время протекания реакций по уравнениям (3) и (4) также намного превышает время простого сгорания газов-восстановителей даже при ограниченном содержании кислорода в зоне горения основного топлива. Предел снижения концентрации Nх в процессе их восстановления при подводе восстановительной среды снизу "стехиометрического" факела составляет 30-60% . Вследствие недостаточного времени для протекания реакций восстановления, увеличение количества сжигаемого вспомогательного топлива и степени неполноты его сгорания с увеличением общего количества газов-восстановителей, подводимых в зону стехиометрического горения основного топлива, не позволит снизить содержание NOx в дымовых газах сверх указанного предела, что недостаточно для достижения норм на ПДВ по NOх при сжигании малореакционного топлива. Кроме этого, газы-восстановители при их избыточном количестве могут сгорая поглощадь кислород из зоны горения основного топлива и ухудшать условия для его воспламенения и выгорания с ростом недожога. С учетом приведенных соображений в зоне вторичного горения над пережимом 7 созданы оптимальные условия для эффективного подавления Nх оставшихся в продуктах сгорания основного топлива после частичного восстановления NO в N2 в низлежащей зоне горения основного топлива. А именно: природный газ, подведенный к соплам 12 горелок 11 струями параллельными верхним скосам 8 пережима 7, подают в узкое сечение последнего практически без предварительного перемешивания со сбросным воздухом, каналы 13 которого имеют угол наклона к горизонту, отличный (а конкретно - меньший), чем сопла 12. В результате размещения сопл 12 на противоположных стенках 3 и 4 в рассечку (перчаточно) создают равномерное распределение газа в узком сечении пережима 7 по ширине камеры 1 и предотвращают проскок оксидов азота помимо зоны восстановления. Выходящие из зоны горения основного топлива продукты его сгорания имеют наибольшую скорость подъемного движения в узком сечении пережима 7 и содержат, кроме NOх, определенное количество кислорода и пыли, не вступивших в реакцию горения. При встречном взаимодействии струй газа с продуктами сгорания в узком сечении пережима 7 происходит наиболее интенсивное их перемешивание и восстановление NO по реакциям (3)-(5) (в преобладанием наиболее эффективной реакции (5). При этом одновременно за счет выделяемого тепла при сгорании части газа с остаточным кислородом, а также и при восстановлении NO и N2, осуществляют высокотемпературный прогрев несгоревшей части пыли в бескислородной среде, т. е. ее газификацию с выходом летучих и связанного азота топлива, и наиболее глубоким восстановлением NO в N2. Избыточные, не вступившие в реакции восстановления горючие продукты, полученные в процессе газификации и неполного сгорания газа, из-за недостатка окислителя в зоне восстановления над пережимом 7, подводят далее в верхнюю часть этой зоны и перемешивают со струями сбросного воздуха из каналов 13 горелок 11, наклоном и выполнением которых в виде горизонтальных щелей по всей ширине топки оптимизируют перемешивание и исключают проскок продуктов помимо зоны вторичного горения. Даже при относительно низкой температуре сбросного воздуха часть газообразных горючих продуктов сгорает, одновременно интенсифицируя прогрев и воспламенение аэровзвеси, неполностью удаленной из сбросного воздуха в циклонах (на чертежах не показаны). Процесс вторичного догорания не создает дополнительно NOх вследствие пониженного температурного уровня в зоне вторичного горения с недостатком сбросного воздуха и его забалластированности водяным паром испаренной из топлива влаги в процессе его сушки в пылесистеме котла, но не обеспечивает полного сгорания всего топлива в этой зоне из-за недостатка сбросного воздуха. Для полного дожигания продуктов неполного сгорания, образованных в зоне восстановления NO и вторичного горения, их направляют в зону третичного горения, образованную подводом дополнительного воздуха тангенциальными (горизонтальными) струями в верхнюю часть камеры 1 сгорания через сопла 15, к которым патрубками 16 подводят горячий воздух. Струями этого воздуха, выходящими из сопл 15 в зоне третичного горения, создают вертикальный вихревой поток, условный цилиндр которого осесимметричен вертикальной оси камеры 1 (см. фиг. 1-4). Движение горящих продуктов в вертикальном вихревом потоке осуществляется по винтовой линии, с увеличением времени пребывания в зоне горения и лучшим выгоранием при меньшей высоте камеры 1. Кроме того, этим обеспечивают полный подвод продуктов неполного сгорания из низлежащих зон из объема камеры 1 в образованную вихревым потоком воронку (зону пониженного давления по оси потока). Предложенной схемой сокращается количество необходимых сопл 15 ввода дополнительного воздуха в зону третичного горения и снижаются недожог в уносе, а также металлоемкость конструкции и затраты. Оптимальный коэффициент воздуха на выходе из камеры сгорания устанавливают регулированием подачи воздуха к соплам 15 путем предварительного определения критического избытка воздуха (




Класс F23K1/00 Подготовка кускового или пылевидного топлива для подачи в устройства для сжигания