Элементы конструкции электродов, устройств для магнитного управления, экранов, устройств для их крепления или размещения, общие для двух и более основных типов электронных и газоразрядных приборов: ...автоэлектронные катоды – H01J 1/304

МПКРаздел HH01H01JH01J 1/00H01J 1/304
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01J Электрические газоразрядные и вакуумные электронные приборы и газоразрядные осветительные лампы
H01J 1/00 Элементы конструкции электродов, устройств для магнитного управления, экранов, устройств для их крепления или размещения, общие для двух и более основных типов электронных и газоразрядных приборов
H01J 1/304 ...автоэлектронные катоды

Патенты в данной категории

СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ АВТОЭМИССИОННОГО КАТОДА

Изобретение может быть использовано в электронике и нанотехнологии. Способ получения материала для автоэмиссионного катода на основе углеродных нанотруб заключается в осаждении модифицирующего материала - дисульфида молибдена на поверхность нанотруб из смеси раствора тиомочевины и молибдата аммония в замкнутом объеме в течение 1-3 суток при 180-250°С. Изобретение позволяет упростить способ получения материала для автоэмиссионного катода и получать материал, характеризующийся пониженным пороговым напряжением включения электронной эмиссии, улучшением полевой эмиссии нанотрубы и повышением плотности тока эмиссии. 4 ил.

2463253
патент выдан:
опубликован: 10.10.2012
УГЛЕРОДСОДЕРЖАЩИЙ НАНОМАТЕРИАЛ С НИЗКИМ ПОРОГОМ ПОЛЕВОЙ ЭМИССИИ ЭЛЕКТРОНОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ)

Изобретение относится к углеродсодержащим наноматериалам с низким порогом полевой эмиссии электронов (НППЭЭ). Техническим результатом изобретения является получение дисперсных материалов с (НППЭЭ) и упрощение технологии их изготовления. Согласно изобретению углеродсодержащий наноматериал с НППЭЭ представляет собой дисперсный порошок с размером частиц менее 50 мкм, состоящий из ядра и поверхностного слоя, при этом ядро сформировано из диэлектрического (ДЭ) или полупроводникового (ПП) материала, и поверхностного слоя из графитоподобного углерода (ГПУ) толщиной 0,5-50 нм. Способы получения наноматериала (варианты) реализуются следующим образом. 1. Порошки ДЭ или ПП материала термообрабатывают в среде углеводородов при температуре, превышающей температуру их термического разложения, в течение времени, необходимого для образования на поверхности частиц порошка слоя ГПУ толщиной 0,5-50 нм. 2. Порошки алмаза термообрабатывают в инертной среде или вакууме при температуре, превышающей температуру перехода алмаза в графит, в течение времени, необходимого для образования на поверхности частиц алмаза слоя ГПУ толщиной 0,5-50 нм. 3. Порошки ковалентных или металлоподобных карбидов термообрабатывают в хлоре при температуре, превышающей температуру их взаимодействия с хлором с образованием газообразных хлоридов и углерода, в течение времени, необходимого для образования на поверхности частиц порошка слоя ГПУ толщиной 0,5-50 нм. 4 н. и 4 з.п. ф-лы, 1 ил.

2431900
патент выдан:
опубликован: 20.10.2011
САМОЗАТАЧИВАЮЩИЙСЯ ТОЧЕЧНЫЙ АВТОЭЛЕКТРОННЫЙ КАТОД ДЛЯ РАБОТЫ В ТЕХНИЧЕСКОМ ВАКУУМЕ

Изобретение относится к области электронной технике и может быть использовано в эмиссионной электронике, технологии обработки поверхности электронными пучками и электронной микроскопии. Техническим результатом является упрощение конструкции катодного узла, повышение допустимой плотности тока долговечности. Сердечник катода выполнен в виде микроострия из тугоплавкого стойкого к распылению материала и покрыт слоем материала с более высокой электропроводностью и меньшей стойкостью к распылению ионами остаточного газа, чем сердечник. 2 ил.

2343583
патент выдан:
опубликован: 10.01.2009
СПОСОБ УПРАВЛЕНИЯ АВТОЭМИССИОННЫМ ТОКОМ ЛАМПЫ И АВТОЭМИССИОННАЯ ЛАМПА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области электроники, а именно к вакуумным триодам, позволяющим коммутировать большие токи малыми напряжениями и использующим полевые (холодные) катоды. Оно может применяться в элементах функциональной электроники: усилителях, генераторах, формирователях коротких высоковольтных импульсов и т.д. В предложенном способе управления автоэмиссионным током лампы изменяют величину поля около катода путем изменения расстояния между катодом и анодом. В автоэмиссионной лампе, содержащей анод и автоэмиссионный катод, расположенные друг относительно друга на небольшом расстоянии, автоэмиссионный катод выполнен в виде многоострийного источника электронов, представляющего собой поверхность с регулярными микронными выступами, имеющими удельное омическое сопротивление на несколько порядков выше удельного сопротивления металлов, и установлен на элементе, изменяющем геометрические размеры под действием подведенной энергии. Технический результат заключается в повышении надежности управления работой лампы за счет гальванической развязки входных цепей управления и выходных цепей автоэмиссионной лампы, повышении коэффициентов усиления по мощности, напряжению и току, увеличении допустимого диапазона напряжений, токов и мощностей. 2 н. и 3 з.п. ф-лы, 10 ил.

2316844
патент выдан:
опубликован: 10.02.2008
ПЛАНАРНЫЙ ЭЛЕКТРОННЫЙ ЭМИТТЕР (ПЭЭ)

Изобретение относится к электронной технике. Планарный электронный эмиттер состоит из тела собственного полупроводника или диэлектрика с ненулевой запрещенной зоной, причем упомянутое тело макроскопической толщины (-1 мм) ограничено двумя параллельными поверхностями, и совокупности из двух электродов, осажденных/выращенных на упомянутых двух свободных поверхностях, и, при приложении к этой структуре, состоящей из двух электродов и упомянутого полупроводникового или диэлектрического тела, заключенного между ними, слабого внешнего электрического поля (-100 В/см) большая доля электронов, инжектированных в упомянутое полупроводниковое или диэлектрическое тело из отрицательно заряженного электрода (катода), проявляет квазибаллистические свойства, то есть эта доля инжектированных электронов разгоняется в упомянутом полупроводниковом или диэлектрическом теле, не испытывая сколько-нибудь заметных неупругих энергетических потерь, в результате чего достигают положительно заряженного электрода (анода) с достаточной энергией и соответствующим импульсом, чтобы пройти через упомянутый анод и выйти из упомянутой структуры в пустое пространство (вакуум), при этом упомянутое полупроводниковое или диэлектрическое тело включает в себя материал или комплекс материалов, имеющий заданную кристаллографическую ориентацию. Технический результат - низкое рассеяние мощности, упрощение конструкции, повышение плотности тока электронной эмиссии, возможность работы при комнатной температуре. 6 с. и 44 з.п.ф-лы, 24 ил.
2224327
патент выдан:
опубликован: 20.02.2004
ХОЛОДНОЭМИССИОННЫЙ КАТОД И ПЛОСКИЙ ДИСПЛЕЙ

Изобретение относится к плоским дисплеям на основе холодноэмиссионных катодов. Техническим результатом является создание полноцветного технологичного дисплея с использованием холодноэмиссионного катода с высокими эмиссионными характеристиками. Холодноэмиссионный пленочный катод состоит из диэлектрической подложки, которая может быть выполнена стеклянной, с расположенным на ней нанокристаллическим углеродсодержащим пленочным эмиттером, выполненным в виде монослоя зерен порошка тугоплавкого материала с размером зерен от 10-9 до 10-4 м, покрытых нанокристаллической углеродсодержащей пленкой. Плоский дисплей содержит плоские стеклянные пластины, на одной из которых расположена система холоднооэмиссионных катодов, выполненных в виде шин, на которые нанесен монослой зерен порошка тугоплавкого материала с размером от 10-9 до 10-4 м, покрытых нанокристаллической углеродсодержащей пленкой. Зерна порошка выполнены из материала из ряда кремний, алмаз, карбид кремния, молибден, вольфрам, тантал, титан и их сплавы. Платы выполнены в виде стеклянных пластин. Между катодом и анодом может быть расположена по крайней мере одна сетка. 2 с. и 6 з.п.ф-лы, 3 ил.
2210134
патент выдан:
опубликован: 10.08.2003
АВТОЭМИССИОННЫЙ КАТОД И ЭЛЕКТРОННЫЙ ПРИБОР

Прибор и катод предназначены для использования в эмиссионной электронике, в вакуумной микроэлектронике для создания плоских панельных дисплеев, генераторов и усилителей электромагнитных колебаний. В фрактальном автоэмиссионном катоде (ФАЭК) эмиттирующие острия располагаются на многоступенчатой (квазифрактальной) поверхности, позволяющей увеличить электрическое поле на кончиках острий и соответственно ток эмиссии. Изобретение обеспечивает повышение тока автоэмиссионного катода с эмиттирующими остриями либо уменьшение рабочих напряжений электронного прибора, в котором используется такой катод. 2 с.п. ф-лы, 1 ил.
2161836
патент выдан:
опубликован: 10.01.2001
ИМПУЛЬСНАЯ ТРУБКА

Изобретение относится к источникам электронного и рентгеновского излучений, которые могут применяться при исследованиях в области радиационных физики и химии, радиобиологии, а также в радиационных технологиях, например в химической промышленности, медицине и др. Техническим результатом при создании данного изобретения является получение однородного пятна излучения большой площади, повышение ресурса трубки и упрощение конструкции. Указанный технический результат достигается тем, что по сравнению с известной импульсной трубкой, содержащей вакуумированный корпус, анод и закрепленный на изоляторе взрывоэмиссионный катод с электронными эмиттерами на токопроводящей основе, новым является то, что электронные эмиттеры выполнены в виде идентичных пластинчатых выступов путем их неполной вырубки и отгиба из материала основы. Электронные эмиттеры выполнены в виде пластинчатых выступов треугольной, полукруглой или трапециевидной формы. 1 з.п ф-лы, 4 ил.
2145748
патент выдан:
опубликован: 20.02.2000
Наверх