Устройства или приспособления для управления интенсивностью, цветом, фазой, поляризацией или направлением света, исходящего от независимого источника, например для переключения, стробирования или модуляции, нелинейная оптика: ..отличающиеся используемым материалом – G02F 1/355

Раздел G ФИЗИКА
G02 Оптика
G02F Приборы или устройства для управления интенсивностью, цветом, фазой, поляризацией или направлением света, оптические функции,которых изменяются при изменениия оптических свойств среды в этих приборах или устройствах например для переключения, стробирования, модуляции или демодуляции ; оборудование или технологические процессы для этих целей; преобразование частоты; нелинейная оптика; оптические логические элементы; оптические аналого-цифровые преобразователи
G02F 1/00 Устройства или приспособления для управления интенсивностью, цветом, фазой, поляризацией или направлением света, исходящего от независимого источника, например для переключения, стробирования или модуляции; нелинейная оптика
G02F 1/355 ..отличающиеся используемым материалом

Патенты в данной категории

СПОСОБ ОГРАНИЧЕНИЯ ИНТЕНСИВНОСТИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Изобретение относится к оптической технике. В способе ограничения интенсивности лазерного излучения (ЛИ), включающем подачу потока лазерного излучения на вход устройства, ограничивающего мощность лазерного излучения, подачу потока ЛИ ведут путем последовательного пропускания потока ЛИ через размещенный на входе в оптическую систему в фокальной плоскости двух сопряженных линз первый каскад, а затем через второй каскад. Первый каскад характеризуется переменным коэффициентом пропускания ЛИ, являющимся функцией величины интенсивности потока ЛИ, и содержит пропускающую ЛИ ячейку, выполненную в виде стеклянной кюветы, заполненную под давлением не более 5 атм инертным газом, например ксеноном, не имеющим полос поглощения в рабочей области спектра. Второй каскад представляет собой нелинейный ограничитель и содержит элемент, ограничивающий мощность ЛИ, выполненный в виде оптически прозрачной матрицы, например полимерной пленки или стеклянной пластинки, с введенным в нее нанодисперсным углеродсодержащим наполнителем. После второго каскада поток ЛИ направляют на светочувствительный датчик, регистрирующий величину преобразованного потока ЛИ. Технический результат заключается в обеспечении возможности повышения степени защиты оптических систем путем ограничения входного лазерного излучения повышенной мощности, а также в уменьшении потерь для защиты от потока слабого лазерного излучения. 1 ил.

2517791
патент выдан:
опубликован: 27.05.2014
УСТРОЙСТВО ДЛЯ ОГРАНИЧЕНИЯ ИНТЕНСИВНОСТИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Изобретение относится к области оптической техники, а именно к ограничителям мощности приемников лазерного излучения, и может найти применение для защиты глаз, оптических систем и приемников лазерного излучения от разрушающего действия входного излучения высокой мощности. Устройство для ограничения интенсивности лазерного излучения состоит из корпуса, ориентированного вдоль направления распространения излучения и содержащего две собирающие линзы, в фокальной плоскости которых расположена герметичная ячейка, заполненная инертным газом. При этом первая из линз размещена на входном торце корпуса, а вторая - после герметичной ячейки. На другом торце корпуса после второй линзы установлен фильтр с нелинейным поглотителем. Технический результат заключается в обеспечении возможности повышения степени защиты оптических систем от действия высокоинтенсивного лазерного излучения, поступающего на вход ограничителя, а также в обеспечении возможности увеличения срока службы устройства. 2 з.п. ф-лы, 1 ил.

2481604
патент выдан:
опубликован: 10.05.2013
СПОСОБ ФОРМИРОВАНИЯ ПЕРИОДИЧЕСКИ ПОЛЯРИЗОВАННОГО НИОБАТА И ТАНТАЛАТА ЛИТИЯ ДЛЯ НЕЛИНЕЙНО-ОПТИЧЕСКИХ ЭЛЕМЕНТОВ И УСТРОЙСТВО ДЛЯ ЛОКАЛЬНОЙ ПОЛЯРИЗАЦИИ НИОБАТА И ТАНТАЛАТА ЛИТИЯ

Настоящее изобретение касается способа лазерного нанесения металлических покрытий и проводников на диэлектрики. Заявленный способ заключается в формировании периодической доменной структуры путем приложения электрического поля, посредством которого осуществляют переключение направления поляризации в периодических локальных участках монокристаллической пластины, изготовленной из конгруэнтного ниобата или танталата лития, номинально чистого или легированного магнием, на поверхность которой предварительно наносят слой с избыточным относительно конгруэнтного состава содержанием лития, обладающего пониженным коэрцитивным полем. При этом нанесение слоя осуществляют в расплаве смеси, содержащей соли лития, при температуре 100-550°С на глубину 50-1000 нм через нанесенную на поверхность монокристаллической пластины изолирующую маску из материала с высоким удельным сопротивлением, в которой период открытых участков соответствует периоду формируемой доменной структуры, а их ширина составляет 0,1-0,4 части периода. Данный способ позволяет повысить точность изготовления поляризованных структур периодически поляризованного ниобата и танталата лития, используемых в качестве элементов в малогабаритных источниках лазерного излучения. 2 н. и 5 з.п. ф-лы, 1 ил.

2425405
патент выдан:
опубликован: 27.07.2011
НЕЛИНЕЙНО-ОПТИЧЕСКИЙ КОМПОЗИТ

Изобретение относится к оптике. Нелинейно-оптический композит содержит наночастицы с полупроводниковым ядром и металлической оболочкой, ядро наночастицы изготовлено из полупроводника с глубокими примесными уровнями в запрещенной зоне, причем энергетический зазор между дном зоны проводимости и примесными уровнями не превышает энергию фотонов рабочего спектрального диапазона композита. При воздействии излучения происходит насыщение примесного поглощения в ядре наночастицы, что вызывает увеличение сечения поглощения и рассеяния всей наночастицы в результате увеличения амплитуды плазмонного резонанса. Техническим результатом изобретения является уменьшение энергетического порога нелинейно-оптического отклика. 2 ил.

2399940
патент выдан:
опубликован: 20.09.2010
СПОСОБ ФОРМИРОВАНИЯ ДОМЕННОЙ СТРУКТУРЫ В МОНОКРИСТАЛЛИЧЕСКОЙ ПЛАСТИНЕ НЕЛИНЕЙНО-ОПТИЧЕСКОГО СЕГНЕТОЭЛЕКТРИКА

Изобретение относится к нелинейной оптике и оптоэлектронике и может быть использовано в оптических системах записи и считывания информации, в волоконно-оптической связи и в лазерных проекционных системах. Способ включает воздействие высокого напряжения, которое прикладывают между металлическими электродами, расположенными на противоположных полярных гранях пластины. Один из электродов выполнен в виде структуры, состоящей из полос определенной конфигурации (полосовой электрод). На поверхность пластины с полосовым электродом воздействуют, по меньшей мере, одиночным импульсом лазерного излучения. Высокое напряжение прикладывают между электродами одновременно или после воздействия импульса лазерного излучения. При этом выбирают такие параметры импульса лазерного излучения, которые не приводят к испарению полосового электрода. На поверхность пластины с полосовым электродом можно многократно воздействовать импульсами лазерного излучения. Величина высокого напряжения, прикладываемого между электродами одновременно с воздействием импульса лазерного излучения, не превышает коэрцитивное значение. Изобретение позволяет формировать сквозные доменные структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика в точном соответствии с рисунком полосового электрода. 7 з.п. ф-лы, 5 ил.

2371746
патент выдан:
опубликован: 27.10.2009
СПОСОБ ПОЛУЧЕНИЯ СОВЕРШЕННЫХ КРИСТАЛЛОВ ТРИБОРАТА ЦЕЗИЯ ИЗ МНОГОКОМПОНЕНТНЫХ РАСТВОРОВ-РАСПЛАВОВ

Изобретение относится к способу получения монокристаллов трибората цезия с нелинейно-оптическими свойствами, которые могут быть использованы в лазерной технике при изготовлении преобразователей частоты лазерного излучения. Кристаллы CsB3O5 (CBO) выращивают из расплава, который, наряду с оксидами бора В2О3 и цезия Cs2O, содержит добавку третьего компонента - оксида переходного металла, образующего химическое соединение с оксидом цезия, например оксида ванадия или оксида молибдена. Для приготовления шихты используют карбонат цезия, борную кислоту или оксид бора, оксиды молибдена или ванадия. Шихту, состав которой лежит в области первичной кристаллизации CBO на диаграмме плавкости Cs2O-В2О 3 - третий компонент, готовят одним из двух способов. Первый заключается в твердофазном синтезе из компонентов или соединений, при разложении которых образуются компоненты смеси. Процесс приготовления шихты состоит из однократного или многократного изотермического отжига, охлаждения и измельчения продукта. При многократном процессе температура отжига на каждой последующей стадии выше, чем на предыдущей. Второй способ приготовления шихты состоит из перемешивания исходных реактивов в стеклянных емкостях с последующим расплавлением порциями в платиновом тигле в печи при температуре 800°С. Используется механическое перемешивание для получения однородного расплава. Выращивание кристаллов осуществляют на затравку методом снижения температуры со скоростью 0.1-2 град/сутки. Применение растворителя снижает температуру роста кристаллов на 150-270°С по сравнению с ростом из стехиометрического расплава и одновременно уменьшает вязкость расплава. Это позволяет избежать испарения

Cs2O, стабилизировать процесс роста кристаллов и предотвратить образование паразитных кристаллов на поверхности расплава. В результате обеспечивается возможность получения кристаллов без включений или с незначительными включениями, характеризующихся высокими показателями оптического качества. 2 з.п. ф-лы.

2367729
патент выдан:
опубликован: 20.09.2009
НЕЛИНЕЙНО-ОПТИЧЕСКИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к ограничителям мощности оптического излучения. Рабочий элемент включает в себя не квантовые нанокристаллы AgCl(I) с адсорбированными молекулами красителя малахитового зеленого и малоатомными кластерами серебра, равномерно распределенные в матрице из поливинилового спирта. Плотность нанокристаллов в полимере составляет 0.2-0.4 г/см3. Концентрация молекул малахитового зеленого 4·10-3-1·10 -2 г/см3. Уровень линейного пропускания в области работы ограничителя мощности оптического излучения - 15%. Для увеличения эффективности нелинейного поглощения излучения, на поверхности нанокристаллов AgCl(I) создавались малоатомные кластеры серебра, путем облучения нанокристаллов при 77°К с адсорбированными молекулами красителя в поливиниловом спирте ультрафиолетовым излучением с =365 нм и плотностью потока

1014 кв/см2·с. Технический результат - снижение порога ограничения мощности излучения. 2 н. и 4 з.п. ф-лы, 4 ил.

2359299
патент выдан:
опубликован: 20.06.2009
МОНОБЛОЧНЫЙ ОГРАНИЧИТЕЛЬ ИНТЕНСИВНОСТИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Изобретение относится к области оптической техники. В моноблочном лимитере корпус содержит внутреннюю полость, заполненную лимитирующим веществом, которое обладает нелинейным поглощением. В качестве лимитирующего вещества может быть использован расслаивающийся раствор с нижней критической точкой, в частности водный раствор триэтиламина концентрации Cраб=(32±2) мас.%, при рабочей температуре раствора менее его критической температуры (tраб<tкр =18,163°С) или водный раствор 2-бутоксиэтанола концентрации Сраб=(30±2) мас.%, при рабочей температуре раствора менее его критической температуры (t раб<tкр=48,272°C). Технический результат - создание ограничителя лазерного излучения с высоким начальным пропусканием и широким интервалом рабочих длин волн, обеспечивающим нейтральное окрашивание поля зрения оптических приборов. 2 з.п. ф-лы, 2 ил.

2350991
патент выдан:
опубликован: 27.03.2009
НЕЛИНЕЙНАЯ ЖИДКОСТЬ ДЛЯ ОГРАНИЧЕНИЯ ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ В УЛЬТРАФИОЛЕТОВОЙ ОБЛАСТИ СПЕКТРА

Изобретение относится к нелинейной оптике. Сущность изобретения состоит в том, что нелинейная жидкость содержит фториндиевый комплекс октафенилтетраазапорфирина, соляную кислоту и хлороформ при следующем соотношении компонентов, г/л:

Фториндиевый комплекс октафенилтетраазапорфирина 0.053-0.210 г/л
Соляная кислота (концентрированная)0.720-6.000 г/л
Хлороформ остальное

Технический результат - увеличение коэффициента ослабления нелинейной жидкостью мощного лазерного излучения УФ области спектра при линейном коэффициенте пропускания слабого УФ излучения не менее 50%. 1 табл.

2269808
патент выдан:
опубликован: 10.02.2006
НЕЛИНЕЙНО-ОПТИЧЕСКАЯ СРЕДА

Изобретение относится к оптике и может быть использовано для защиты фотоприемных устройств от ослепления лазерным излучением повышенной интенсивности и при создании нелинейно-оптических ограничителей излучения, предназначенных для защиты органов зрения от повреждения лазерным излучением, для создания низкопороговых оптических переключателей. Целью изобретения является уменьшение энергетического порога возникновения нелинейно-оптического отклика среды. Нелинейно-оптическая среда содержит неорганические кристаллические наночастицы, помещенные в прозрачную среду с линейными оптическими свойствами. Наночастицы состоят из ядра, не содержащего оболочки, содержащей поглощающие центры, например примеси или дефекты. Оболочка и ядро наночастицы изготовлены из одного материала. При воздействии лазерного излучения на нелинейно-оптическую среду в оболочке наночастицы, содержащей дефекты, начинается фотогенерация неравновесных электронов из примесной зоны в зону проводимости. Изменение концентрации носителей приводит к появлению нелинейной добавки к показателю преломления и поглощения оболочки. При фотогенерации носителей возникает градиент их концентрации между оболочкой и ядром, в результате чего начинается их диффузия вглубь ядра. При этом растет толщина слоя, содержащего нелинейную добавку к показателю преломления и поглощения. В результате изменяется диэлектрическая проницаемость наночастицы, что приводит к изменению сечения ее поглощения и рассеяния. Нелинейно-оптический эффект проявляется в ограничении излучения. 4 ил.

2267145
патент выдан:
опубликован: 27.12.2005
Наверх