способ получения композиции для фотодинамической терапии на основе хлорина е6, включенного в фосфолипидные наночастицы

Классы МПК:A61K31/409  содержащие четыре таких кольца, например производные порфина, билирубин, биливердин
A61K47/26 углеводы
A61K47/30 высокомолекулярные соединения
A61K47/44 масла, жиры или воски, отнесенные к нескольким рубрикам из рубрик  47/02
B82B1/00 Наноструктуры
B82Y5/00 Нано-биотехнология или нано-медицина, например белковая инженерия или доставка лекарств в заданную точку организма человека
Автор(ы):, , , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича" Российской академии медицинских наук (ФГБУ "ИБМХ" РАМН) (RU)
Приоритеты:
подача заявки:
2013-05-24
публикация патента:

Изобретение относится к способу получения лекарственного средства на основе хлорина Е6, включенного в фосфолипидные наночастицы, для применения в качестве средства для фотодинамической терапии. Способ характеризуется тем, что полученный при нагревании водный раствор мальтозы смешивают с хлорином Е6 и затем смешивают с водной эмульсией фосфатидилхолина. После этого полученную эмульсию подвергают нескольким циклам гомогенизации под высоким давлением 500-1000 атм при температуре 40-50°C с последующей нейтрализацией водным раствором щелочи и сублимационной сушкой. 1 табл., 1 пр.

Формула изобретения

Способ получения лекарственного средства для фотодинамической терапии на основе хлорина Е6, включенного в фосфолипидные наночастицы, характеризующийся тем, что полученный при нагревании водный раствор мальтозы смешивают с хлорином Е6 с последующим смешиванием с водной эмульсией фосфатидилхолина и полученную эмульсию подвергают нескольким циклам гомогенизации под высоким давлением 500-1000 атм при температуре 40-50°C с последующей нейтрализацией водным раствором щелочи и сублимационной сушкой.

Описание изобретения к патенту

Изобретение относится к области фармацевтики и медицины и касается простого способа получения стабильной при хранении и эффективной по своему специфическому действию лекарственной композиции для фотодинамической терапии (ФДТ) на основе хлорина Е6 и фосфолипидных наночастиц с высоким процентным содержанием хлорина Е6.

Одним из современных подходов в разработке лекарств нового поколения является конструирование оригинальных форм на основе субстанций известного спектра действия с использованием современных технологий, позволяющих получать препараты с высокой биодоступностью, терапевтической эффективностью и ослабленными побочными действиями.

Нанотехнологии обладают большим потенциалом. Их применение в медицине в настоящее время стало возможным благодаря уникальным свойствам появившихся новых наноматериалов и технологий, позволяющих конструировать новые биологически активные нанокомпозиции.

К новым технологиям, способным «продлить жизнь» известных лекарственных средств, можно отнести разработки систем транспорта лекарственных препаратов в организме.

Наиболее существенные успехи были достигнуты в разработке транспортных систем на основе фосфолипидных наночастиц, которые имеют ряд преимуществ перед другими. Они нетоксичны, биодеградируемы, не вызывают аллергических реакций, имеют высокое сродство к мембранам клеток. Одной из наиболее ранних систем транспорта биологически активных веществ в организме были липосомы.

Хлорин Е6 является наиболее эффективным, успешно используемым в медицинской практике фотосенсибилизатором для лечения рака и других новообразований методом фотодинамической терапии (ФТД). Хлорин Е6 обладает рядом спектральных, физико-химических и энергетических характеристик, выгодно отличающих его от других фотосенсибилизаторов. Например, (1) наличие полосы поглощения в длинноволновой области видимого спектра (с максимумом 662 нм в биологических средах), что соответствует области наибольшей оптической прозрачности для биологических тканей; (2) высокий индекс контрастности; (3) высокий уровень накопления в тканях-«мишенях» по сравнению с интактными тканями; (4) высокая фотодинамическая активность при использовании малых доз; (5) низкая темновая и световая токсичность; (6) быстрая, в течение 24-36 часов, элиминация из организма и др.

Впервые водорастворимые производные хлорофилла для медицинских целей были использованы Е. Snyder (США) в 1942 г., и применялись для профилактики и лечения сердечно-сосудистых заболеваний, атеросклероза, ревматоидного артрита.

В научной литературе об использовании производных хлоринового ряда для фотодинамической терапии было заявлено в 1986 г. В 1994-2001 гг. в России А.В. Решетниковым [1] была разработана технология извлечения из растительного сырья комплекса биологически активных хлоринов, которые содержат в качестве основного компонента хлорин Е6, фотоцитотоксическое действие которого на опухоль усиливается, а общие фармакологические показатели улучшаются за счет двух других природных хлоринов, содержащихся в экстракте.

На протяжении последних 30 лет ведутся интенсивные поиски наиболее эффективных фотосенсибилизаторов. На данный момент в мире разработано и проходит клинические испытания порядка 20 различных соединений для ФДТ.

Учитывая, что ФТД вошла в стандарты лечения с 2010 г., хлорин Е6 и его производные востребованы на отечественном фармацевтическом рынке и находят все более широкое применение, например, для терапии рака шейки матки, мочевого пузыря, различных слизистых. Однако, несмотря на востребованность, хлорин Е6 как субстанция, имеет ряд недостатков, которые ограничивают его широкое потребление, а именно: (1) небольшой срок хранения и потеря оптических свойств; (2) как правило, жидкая форма различных готовых препаратов; (3) выведение из организма в течение 48 и более часов и др.

Поэтому поиск новых и разработка эффективных форм хлорина Е6 как препарата для ФДТ и способов их получения является актуальной и своевременной задачей.

Одной из наиболее удобных, подходящих для ФДТ лекарственных форм хлорина Е6, обладающих рядом вышеуказанных преимуществ перед другими, является композиция на основе хлорина Е6, включенного в фосфолипидные наночастицы.

Вместе с тем, поскольку хлорин Е6 является гидрофобным соединением, получение фосфолипидных наночастиц с включенным в них хлорином Е6 представляет собой достаточно сложную проблему.

Известна лекарственная композиция для ФДТ на основе фосфолипидных наночастиц, содержащих до 90% хлорина Е6 (Стрекалова О.С. «Фосфолипидные наночастицы: получение, характеристика, использование для транспорта лекарств в организме», Автореферат диссертации на соискание ученой степени кандидата биологических наук, Москва, 2010). Однако в указанном документе способ получения фосфолипидных наночастиц с включенными в них лекарственными средствами, в частности хлорина Е6, и получение соответствующих композиций на их основе не описан.

Известен также способ получения фосфолипидных композиций лекарственных средств в форме фосфолипидных наночастиц. При этом, в случае гидрофобных лекарственных средств лекарственное средство и фосфатидихолин растворяют в этаноле, отгоняют этанол, добавляют воду, суспендируют, добавляют мальтозу и полученную суспензию гомогенизируют (патент РФ 2391966, 20.06.2010). При этом требуется использование такого растворителя как этанол, и его последующая отгонка, что, с одной стороны, усложняет процесс, а с другой стороны, использование каких-либо дополнительных и при этом достаточно токсичных средств нежелательно при изготовлении фармацевтических композиций.

Задачей настоящего изобретения является разработка простого способа получения лекарственного средства на основе хлорина Е6, включенного в фосфолипидные наночастицы, для фотодинамической терапии, не требующего использования достаточно токсичных растворителей и обеспечивающего получение фосфолипидных наночастиц с высоким, до 93%, содержанием хорина Е6.

В соответствии с изобретением описывается способ получения лекарственного средства для фотодинамической терапии на основе хлорина Е6 и фосфолипидных наночастиц, характеризующийся тем, что полученный при нагревании водный раствор мальтозы смешивают с хлорином Е6 с последующим смешиванием с водной эмульсией фосфатидилхолина и полученную эмульсию подвергают нескольким циклам гомогенизации под высоким давлением 500-1000 атм при температуре 40-50°C с последующей нейтрализацией водным раствором щелочи и лиофилизацией.

Осуществление вышеуказанного способа обеспечивает получение средства для ФДТ на основе хлорина Е6, включенного в фосфолипидные наночастицы размером до 30 нм, и имеющего высокий процент включения хлорина Е6 в наночастицы - до 93%.

Пример осуществления изобретения.

Включение хлорина Е6 в фосфолипидные наночастицы.

Готовят два раствора:

Раствор А. 25 г Lipoid S 100 растворяют в 250 мл воды для инъекций (рН 6,7), перемешивают, используя механическую мешалку.

Раствор Б. Растворяют 100 г мальтозы в воде для инъекций при тщательном перемешивании. Раствор слегка подогревают до полного растворения мальтозы (раствор должен стать прозрачным), затем добавляют 2,5 г хлорина Е6 и конечный объем доводят до 250 мл.

Растворы А и Б смешивают и тщательно перемешивают с помощью механической мешалки до получения однородной эмульсии. Конечный объем смеси доводят до 500 мл водой для инъекций.

Полученную суспензию по способам 1 или 2 подвергают гомогенизации с помощью гомогенизатора высокого давления Mini-Lab 7.30 VH, Rannie, Дания (APV-гомогенизатор) (способ А) или микрофлюадайзера М110ЕН30К, Microfluidics, США (способ Б). После каждого цикла осуществляют отбор проб для контрольных измерений.

Параметры процесса гомогенизации: давление около 1000 атм, температура суспензии - 45°C, время гомогенизации - 5 мин, количество циклов процесса 7. По окончании гомогенизации доводят рН полученной суспензии до 7,0-7,5 титрованием 1N раствором NaOH, затем фильтруют через фильтр 0,22 мкм, разливают во флаконы и подвергают сублимационной сушке. Флаконы закрывают резиновыми пробками, обкатывают алюминиевыми колпачками и маркируют.

Полученный препарат анализируют.

Размер частиц - более 80% частиц в образце имеют размер 24,5 нм

Количество хлорина Е6 (ВЭЖХ) - 49 мг

Процент включения хлорина Е6 в фосфолипидные наночастицы - 91%

Количество фосфатидилхолина во флаконе (УФ-спектрометрия) - 500 мг

способ получения композиции для фотодинамической терапии на основе   хлорина е6, включенного в фосфолипидные наночастицы, патент № 2535054

В экспериментах in vivo на мышах с привитой опухолью LLC изучали сравнительную эффективность специфического действия хлорина Е6, встроенного в фосфолипидные наночастицы (Нанохлорин). В качестве препарата сравнения использовали коммерческий препарат Радахлорин, в котором действующим веществом является глюкаминовая соль хлорина Е6.

Сравнение фотоактивности Нанохлорина и Радахлорина показало, что оба препарата обладают высокой противоопухолевой активностью при одинаковых условиях проведения фотодинамической терапии (ФДТ). Для Нанохлорина торможение роста опухоли (ТРО) составляет 96,1-100%, увеличение продолжительности жизни (УПЖ) - 57,0%, критерий излеченности (КИ) - 50,0%; для препарата "Радахлорин", соответственно ТРО составляет 93,1-100%, УПЖ - 63,3%, КИ - 60,0%.

Проведены также предварительные исследования токсичности препарата «Нанохлорин», предназначенного для фотодинамической терапии злокачественных новообразований, на двух видах лабораторных животных - мышах и крысах.

Изучена «острая» токсичность на мышах. Препарат вводили в дозах от 30 до 520 мг/кг (концентрации 0.15, 0.5 и 0.75%). Доза препарата «Нанохлорин», равная 175 мг/кг (концентрация 0.75%), охарактеризована как максимально переносимая. Возможной причиной смерти мышей от однократного внутривенного введения препарата «Нанохлорин» в летальных дозах (260 мг/кг и 520 мг/кг) является острая сердечно-сосудистая недостаточность.

Проведено изучение «хронической» токсичности препарата «Нанохлорин» на крысах при многократном (в течение 10 дней) внутривенном введении в диапазоне исследуемых доз (суммарные дозы 25 мг/кг и 250 мг/кг). Во время введения препарата и в период наблюдения в течение 30 суток гибели животных и внешних признаков интоксикации не выявлено.

При изучении «хронической» токсичности препарата «Нанохлорин» на крысах показано, что препарат при многократном (в течение 10 дней) внутривенном применении в диапазоне исследуемых доз (суммарные дозы - 25 мг/кг и 250 мг/кг) не оказывал токсического действия на периферическую кровь, печень, почки, органы ЖКТ и ЦНС крыс. У животных наблюдали незначительное транзиторное повышение количества лейкоцитов в периферической крови и количества общего билирубина в сыворотке крови.

Препарат «Нанохлорин» в суммарных дозах, равных 25 мг/кг и 250 мг/кг, не вызывал раздражения, воспаления или деструкции тканей в месте инъекций.

Таким образом, разработан простой способ получения лекарственного средства на основе хлорина Е6, снабженного фосфолипидной наносистемой транспорта для ФДТ. Средство обладает следующими характеристиками:

- высокое содержание хлорина Е6 в фосфолипидных наночастицах;

- высокое накопление в опухолевых тканях;

- высокое значение коэффициента контрастности;

- быстрое выведение из организма;

- уменьшение фототоксических эффектов;

- минимальный размер наночастиц (до 30 нм), что позволяет предохранить средство от деградации в ретикулоэндотелиальной системе;

- лиофильно высушенная форма, что увеличивает срок хранения препарата (до 4-5 лет), удобна в использовании и транспортировке.

Класс A61K31/409  содержащие четыре таких кольца, например производные порфина, билирубин, биливердин

фотосенсибилизатор и способ его получения -  патент 2523380 (20.07.2014)
способ фотодинамической терапии больных с опухолевыми метастатическими плевритами -  патент 2514107 (27.04.2014)
способ получения хлоринов и их фармацевтические применения -  патент 2513483 (20.04.2014)
способ антимикробной фотодинамической терапии острых воспалительных заболеваний гортаноглотки или их гнойных осложнений -  патент 2511545 (10.04.2014)
способ повышения резистентности организма млекопитающих при радиационном поражении -  патент 2508100 (27.02.2014)
способ лечения поражений, ассоциированных с воздействием алкилирующих веществ -  патент 2506083 (10.02.2014)
способ комплексного лечения острых эпидидимоорхитов, вызванных грамположительной и грамотрицательной микрофлорой -  патент 2495692 (20.10.2013)
способ лечения дистрофических заболеваний вульвы -  патент 2482893 (27.05.2013)
фотосенсибилизатор для фотодинамической терапии -  патент 2479585 (20.04.2013)
карборанилпорферины и их применение -  патент 2477161 (10.03.2013)

Класс A61K47/26 углеводы

фармацевтические и/или пищевые композиции на основе короткоцепочечных жирных кислот -  патент 2528106 (10.09.2014)
коронародилатирующее лекарственное средство -  патент 2526118 (20.08.2014)
фармацевтический ингаляционный препарат для лечения бронхиальной астмы и хронической обструктивной болезни легких, содержащих в качестве активного вещества микронизированный тиотропия бромид, и способ его получения -  патент 2522213 (10.07.2014)
новые защитные композиции для рекомбинантного фактора viii -  патент 2510279 (27.03.2014)
ингаляционный препарат для лечения бронхиальной астмы и хронической обструктивной болезни легких и способ его получения -  патент 2504382 (20.01.2014)
способ получения высокодисперсных фармацевтических композиций сальбутамола -  патент 2504370 (20.01.2014)
усилитель чрескожного всасывания и трансдермальный препарат с его использованием -  патент 2504363 (20.01.2014)
маннит, распадающийся в полости рта -  патент 2500388 (10.12.2013)
стабильная изотоническая лиофилизированная протеиновая композиция -  патент 2497500 (10.11.2013)
фармацевтическая композиция для модифицированного высвобождения -  патент 2495666 (20.10.2013)

Класс A61K47/30 высокомолекулярные соединения

стабильные составы бортезомиба -  патент 2529800 (27.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
способ приготовления средства, обладающего свойством стимуляции регенерации хрящевой, костной, мышечной тканей и способ стимуляции регенерации хрящевой, костной, мышечной тканей с использованием приготовленного средства -  патент 2527701 (10.09.2014)
содежащий октреотид состав с замедленным высвобождением со стабильно высоким уровнем воздействия -  патент 2526822 (27.08.2014)
синтетический иммуноген для защиты от токсического действия наркотических и психоактивных веществ -  патент 2526807 (27.08.2014)
травяной состав местного применения для лечения акне и кожных расстройств -  патент 2526138 (20.08.2014)
имплантируемые продукты, содержащие наночастицы -  патент 2524644 (27.07.2014)
орально распадающиеся таблеточные композиции темазепама -  патент 2524638 (27.07.2014)
антимикробные/антибактериальные медицинские устройства, покрытые традиционными средствами китайской медицины -  патент 2524635 (27.07.2014)
фармацевтическая композиция лигандов рецепторов секретагогов гормона роста -  патент 2523566 (20.07.2014)

Класс A61K47/44 масла, жиры или воски, отнесенные к нескольким рубрикам из рубрик  47/02

композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
мазь доктора рустамова -  патент 2527335 (27.08.2014)
твердые композиции, содержащие 5-аминолевулиновую кислоту -  патент 2527328 (27.08.2014)
полутвердые композиции и фармацевтические продукты -  патент 2526803 (27.08.2014)
травяной состав местного применения для лечения акне и кожных расстройств -  патент 2526138 (20.08.2014)
мазь для лечения ожогов -  патент 2523551 (20.07.2014)
способ количественной оценки эффективности олеиновой кислоты как переносчика рнк через биологические мембраны -  патент 2523119 (20.07.2014)
лекарственный препарат в суппозиториях для лечения инфекционно-воспалительных заболеваний, вызванных вирусом простого герпеса 1-го типа и цитомегаловирусом и способ лечения им детей -  патент 2521272 (27.06.2014)
средство наружной терапии для больных атопическим дерматитом -  патент 2517520 (27.05.2014)
крем для наружного лечения синдрома пиккарди-грехема-литтла-лассьюэра -  патент 2517239 (27.05.2014)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)

Класс B82Y5/00 Нано-биотехнология или нано-медицина, например белковая инженерия или доставка лекарств в заданную точку организма человека

композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
способ получения наноразмерной системы доставки нуклеозидтрифосфатов в клетки млекопитающих -  патент 2527681 (10.09.2014)
способ получения наноматериала на основе рекомбинантных жгутиков археи halobacterium salinarum -  патент 2526514 (20.08.2014)
контрастные агенты на основе наночастиц для диагностической визуализации -  патент 2526181 (20.08.2014)
травяной состав местного применения для лечения акне и кожных расстройств -  патент 2526138 (20.08.2014)
способ управления биохимическими реакциями -  патент 2525439 (10.08.2014)
многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом -  патент 2524654 (27.07.2014)
имплантируемые продукты, содержащие наночастицы -  патент 2524644 (27.07.2014)
способ получения минеральной кремниевой воды -  патент 2523415 (20.07.2014)
композиция в качестве бактерицидного и антифунгального средства (варианты) и макропористый бактерицидный материал на ее основе -  патент 2522986 (20.07.2014)
Наверх