камерный модуль реактора синтеза гликолида и лактида

Классы МПК:A61L17/12 гомополимеры или сополимеры гликолевой или молочной кислот
C08G63/08 лактоны или лактиды
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" (RU)
Приоритеты:
подача заявки:
2013-05-22
публикация патента:

Изобретение относится к области химии и может быть использовано для промышленного синтеза мономеров гликолида и лактида, применяемых в качестве сырья для получения биоразлагаемых полимеров различного состава. Камерный модуль реактора синтеза гликолида или лактида включает корпус камерного модуля с рубашкой, обеспечивающей рабочую температуру до 350°C, штуцерами для обеспечения вакуума и продувки рабочих объемов инертным газом, мешалкой и конусным днищем, снабженным рубашкой, перемешивающим устройством и патрубком вывода кубового остатка. Мешалка камерного модуля сконструирована по двухопорной схеме, в которой верхняя опора представляет собой подшипник качения, а нижняя опора представляет собой подшипник скольжения. Изобретение обеспечивает интенсивное перемешивание внутри корпуса аппарата и позволяет предотвратить деформацию аппарата под действием высоких температур за счет свободного перемещения нагреваемых элементов. 1 ил., 2 пр.

камерный модуль реактора синтеза гликолида и лактида, патент № 2531942

Формула изобретения

Камерный модуль реактора синтеза гликолида или лактида, включающий корпус камерного модуля с рубашкой, обеспечивающей рабочую температуру до 350°C, штуцерами для обеспечения вакуума и продувки рабочих объемов инертным газом, мешалкой, сконструированной по двухопорной схеме, в которой верхняя опора представляет собой подшипник качения, а нижняя опора представляет собой подшипник скольжения, и конусным днищем, снабженным рубашкой, перемешивающим устройством и патрубком вывода кубового остатка.

Описание изобретения к патенту

Изобретение относится к устройству промышленного способа синтеза мономеров гликолида и лактида, применяемых в качестве сырья для получения биоразлагаемых полимеров различного состава. Полигликолидлактидные биоразлагаемые полимеры находят широкое применение в медицине, в качестве шовного материала, биоимплантов, для создания медицинских препаратов пролонгированного действия, а также упаковочного материала. Камерный модуль является составной частью вакуумного камерного реактора синтеза мономеров гликолида и лактида. Получение мономеров основано на протекании реакции деполимеризации гликолида из олигомера гликолевой кислоты, а лактида из олигомера молочной кислоты в тонкой пленке за счет отщепления молекул воды и закрытия цикла.

Известны различные тонкопленочные испарители (http://tirit.org/reactor_him/isparit_pl_eyela.php). Продукт попадает в цилиндрический корпус и размазывается по его стенкам в тонкую пленку с помощью вращающихся лопастей. Эффективность работы увеличивается за счет уменьшения времени, затрачиваемого на процесс испарения под вакуумом. Испарительная часть (цилиндрический корпус) выполняется из боросиликатного стекла с рубашкой для поддержания заданной температуры испарения с помощью теплоносителя, температура которого задается термостатом. Недостатками указанных аппаратов является исполнение из борсиликатного стекла, которое неустойчиво к среде олигомеров гликолевой и молочной кисло, и к температуре реакции деполимеризации олигомеров. И даже исполнение подобных аппаратов из нержавеющей стали не позволяет проводить поставленные задачи в нем.

Известны устройства, пленочные испарители с роторной мешалкой (Бакластов A.M., Удыма П.Г. Пленочные испарители. Учебное пособие. Москва. 1985 г.), предназначенные для применения проведения процессов выпаривания и концентрирования растворов различных материалов. Выпаривание растворов в пленочных испарителях связано со сложными процессами гидродинамики и тепло- и массообмена, что во многих случаях затрудняет решение задач проектирования установок. Основными элементами таких аппаратов являются: роторная мешалка, корпус, распределительное устройство. Корпус аппарата оборудован рубашкой для подачи теплоносителя в виде пара или нагретой жидкости. Образование пленки на вертикальной стенке аппарата происходит за счет равномерной подачи раствора с помощью распределительного кольца и роторной мешалки. Подобные аппараты разрабатывают под определенный процесс (выпаривания определенного вещества).

Недостатки:

- применение только для выпаривания органических растворителей;

- рабочие температуры до 200°C;

- не подходит для выпаривания сильновязких веществ.

Задачей настоящего изобретения является разработка камерного модуля, предназначенного для проведения реакции деполимеризации олигомера гликолевой кислоты или олигомера молочной кислоты в одном аппарате. Особенностью данного аппарата является возможность проведения процессов с рабочей температурой до 350°C, проведение в одном аппарате разных по условиям двух процессов. Предусмотрена подача инертного газа для обеспечения уноса парогазовой смеси, содержащей получаемый продукт из рабочего объема камерного модуля. Конструкция конусного днища предусматривает наличие перемешивающего устройства для сбора пека.

Поставленная задача решается тем, что камерный модуль реактора синтеза гликолида и лактида включает корпус камерного модуля с рубашкой, обеспечивающей рабочую температуру до 350°C, штуцерами для обеспечения вакуума и продувки рабочих объемов инертным газом, мешалкой, сконструированной по двухопорной схеме, в которой верхняя опора представляет собой подшипник качения, а нижняя опора представляет собой подшипник скольжения, и конусным днищем, снабженным рубашкой, пермешивающим устройством и патрубков вывода кубового остатка.

Преимущества разработанного камерного модуля:

- высокая степень герметичности, обеспечиваемая системой уплотнений для поддержания вакуума внутри аппарата. Наибольшую техническую трудность создает уплотнение подвижного соединения - место ввода вала мешалки внутрь корпуса камерного модуля;

- разработана специальная мешалка максимально возможной длины и площадью рабочих поверхностей, а также с минимальными конструктивными зазорами относительно корпуса камерного модуля для обеспечения максимальной зоны перемешивания внутри корпуса аппарата;

- поддержание относительно высоких температур в зоне реакции может привести к деформациям, которые могут повлечь за собой заклинивание и выход из строя всего аппарата. Предотвращение деформации аппарата, вызванной нагревом, обеспечивается возможностью свободного перемещения нагреваемых элементов;

- для уплотнения подвижного соединения - места ввода вала мешалки внутрь корпуса камерного модуля использовано торцевое уплотнение с холодильником, обеспечивающим заданную герметичность внутренней полости камерного модуля и требуемую температуру в зоне контактных пар.

Торцевое уплотнение 7 требует высокой степени соосности вала мешалки относительно корпуса аппарата и низких значений радиального биения. Для обеспечения нормального функционирования торцевого уплотнения приняты следующие конструктивные решения:

- с целью уменьшения радиального биения вала мешалки в зоне торцевого уплотнения, вызванного прогибом от собственного веса, была применена схема вертикального камерного модуля.

- мешалка сконструирована по двухопорной схеме. Верхняя опора, представляющая собой подшипник качения, является жесткой. Нижняя опора, представляющая собой подшипник скольжения - плавающая.

- для увеличения жесткости центральная часть мешалки выполнена в форме барабана, представляющего собой радиально расположенные ребра, приваренные к трем дискам, одетым на вал мешалки. Крутящий момент на диске с лопастями передается через шпоночные соединения.

В камерный модуль через патрубок ввода сырья осуществляют постепенную подачу предварительного разогретого до 250-270°C и смешанного с катализатором олигомера в рабочую зону реактора, где происходит его распределение посредством высокой скорости вращения мешалки 80-100 об/мин, в виде тонкой пленки на внутренней стенке камерного модуля, за счет чего протекает реакция деполимеризации при температурах: для олигомера гликолевой кислоты 280-290°C, для олигомера молочной кислоты 200°C, и обеспечение уноса инертным газом получаемого мономера в виде парогазовой смеси в дефлегматор и конденсатор через патрубок вывода продукта.

На рисунке 1 представлен камерный реактора синтеза гликолида и лактида.

Корпус камерного модуля 1 для обеспечения минимальных зазоров с мешалкой 2 выполнен из цельной круглой трубы с приваренными с обеих концов фланцами. С наружной стороны корпуса приварена рубашка нагрева. В рубашку вварены два патрубка - для входа и выхода теплоносителя (масло).

К корпусу камерного модуля приварены патрубки:

- выхода 5 паров гликолида или лактида, воды и олигоэфиров ГК и МК;

- входа инертного газа (азота) 6;

- ввода термопары для замера температуры в зоне реакции. Термопара вставляется в специальную съемную герметичную гильзу для возможности сборки реактора.

К верхней части корпуса камерного модуля крепится через фланцевое соединение крышка с патрубками:

- входа 4 исходного продукта (олигомера гликолевой и молочной кислот);

- замер вакуума;

- выравнивание вакуума (давления).

К нижней части корпуса камерного модуля 3 при помощи фланцевого соединения крепится коническое днище с рубашкой нагрева. Расположенное в зоне конического днища камерного модуля перемешивающее устройство 3.1 представляет собой двухлопастное устройство, крепящееся к валу мешалки камерного модуля через втулку. Крутящий момент на двухлопастное устройство передается через шпоночное соединение.

Между фланцем корпуса камерного модуля и фланцем конического днища расположен корпус нижней опоры мешалки - с подшипником скольжения. Для обеспечения максимальной зоны нагрева конического днища и обеспечения требуемого минимального расстояния между катетами сварных швов - 20 мм рубашка выполнена сварной из двух точеных деталей.

В рубашку конического днища вварены два патрубка - для входа и выхода теплоносителя (масло). В нижней части конического днища расположен патрубок выхода кубового остатка.

Примеры конкретной работы устройства приведены ниже.

Пример 1. При достижении температуры в камерном модуле 290°C включают мешалку с частотой вращения 85 об/мин, устанавливают расход азота 0,08 м3 /мин, набирают вакуум 4-6 мБар и начинают подачу расплава олигомера гликолевой кислоты из накопительной емкости открытием клапана патрубка ввода сырья. Сырье попадает на распределительную тарелочку и распыляется по внутренней стенке аппарата в виде тонкой пленки, которая обеспечивается путем дополнительного распределения по поверхности лопастями мешалки. Образующиеся в реакторе пары гликолида-сырца уносятся через патрубок вывода продукта и конденсируются в теплообменнике. После прекращения отгонки гликолида-сырца из камерного модуля отключают нагрев, сбрасывают вакуум и удаляют пек через патрубок в конусном днище, снабженным рубашкой и перемешивающим устройством, для предотвращения застывания и прилипания пека к поверхности днища.

Пример 2. При достижении температуры в камерном модуле 220°C включают мешалку с частотой вращения 120 об/мин, устанавливают расход азота 0,08 м3/мин, набирают вакуум 4-7 мБар и начинают подачу расплава олигомера молочной кислоты из накопительной емкости открытием клапана патрубка ввода сырья. Сырье попадает на распределительную тарелочку и распыляется по внутренней стенке аппарата в виде тонкой пленки, которая обеспечивается путем дополнительного распределения по поверхности лопастями мешалки. Образующиеся в реакторе пары лактида-сырца уносятся через патрубок вывода продукта и конденсируются в теплообменнике. После прекращения отгонки лактида-сырца из камерного модуля отключают нагрев, сбрасывают вакуум и удаляют пек через патрубок в конусном днище, снабженным рубашкой и перемешивающим устройством, для предотвращения застывания и прилипания пека к поверхности днища.

Класс A61L17/12 гомополимеры или сополимеры гликолевой или молочной кислот

Класс C08G63/08 лактоны или лактиды

способ получения поли-пара-диоксанона -  патент 2520970 (27.06.2014)
способ непрерывного получения сложных полиэфиров -  патент 2510990 (10.04.2014)
одностадийный способ получения нетканого материала на основе полилактида и нетканый материал -  патент 2500693 (10.12.2013)
способ обработки полимеров, содержащих остаточный катализатор -  патент 2495883 (20.10.2013)
композиция полимера молочной кислоты и формованное изделие из данной композиции -  патент 2485144 (20.06.2013)
биодеградируемые сополимеры на основе стирола и полиангеликалактона -  патент 2482134 (20.05.2013)
смеси полимолочной кислоты и термопластичных полимеров для областей применения при упаковывании -  патент 2480485 (27.04.2013)
способ получения биоразлагаемого полимера -  патент 2478107 (27.03.2013)
способ получения биоразлагаемых межмолекулярных циклических сложных диэфиров альфа-гидроксикарбоновых кислот, способ непрерывного получения полилактида и применение этих способов -  патент 2478098 (27.03.2013)
способ очистки технологических потоков при производстве дилактида или полилактида -  патент 2471791 (10.01.2013)
Наверх