способ получения магнетита
Классы МПК: | C01G49/08 закись-оксид железа ( Fe3O4 ) C09C1/24 оксиды железа C25B1/00 Электролитические способы получения неорганических соединений или неметаллов |
Автор(ы): | Алиев Зазав Мустафаевич (RU), Магомедова Джамиля Шамиловна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (RU) |
Приоритеты: |
подача заявки:
2013-03-14 публикация патента:
27.07.2014 |
Изобретение может быть использовано в химической промышленности. Способ получения магнетита включает окисление железа при проведении электролиза. Процесс проводят в трехэлектродном двуханодном элетролизере, в который заливают 1M раствор гидроксида натрия и подключают ток. Напряжение составляет 10 B, катодная плотность тока на катоде из титана 0,2 A/см2, анодная плотность тока на аноде из Ст3 0,3 A/см2, а на диоксидсвинцовом аноде на титановой основе - 0,1 А/см2. При этом происходит одновременное растворение анода из Ст3 и выделение кислорода на диоксидсвинцовом аноде на титановой основе. Изобретение позволяет получить магнетит без подачи воздуха для окисления железа, повысить чистоту продукта. 1 пр.
Формула изобретения
Способ получения магнетита, включающий окисление железа при проведении электролиза, отличающийся тем, что процесс проводят в трехэлектродном двуханодном элетролизере, в который заливают 1M раствор щелочи натрия, подключают ток, причем напряжение составляет 10 B, катодная плотность тока на катоде из титана 0,2 A/см 2, анодная плотность тока на аноде из Ст3 0,3 A/см 2, а на диоксидсвинцовом аноде на титановой основе - 0,1 А/см2, при этом происходит одновременное растворение анода из Ст3 и выделение кислорода на диоксидсвинцовом аноде на титановой основе.
Описание изобретения к патенту
Изобретение относится к области электрохимических производств, в частности к способам получения магнетита, и может быть использовано в различных областях химической промышленности, а также в лакокрасочной и других отраслях промышленности.
Известны химические способы получения магнетита, включающие образование гидроксида железа (II), путем обработки соли сернокислого железа (II) щелочью, с последующим его окислением кислородом воздуха или CuSO4 [Патент США № 4108787, кл. C01G 49/06. Способ получения ферромагнитной окиси железа. Опубликовано в 1979. Бюллетень изобретений № 6 и Патент № 2390497 от 27.05.2010. Способ получения магнетита].
Недостатками указанных способов являются необходимость использования соли двухвалентного железа и щелочи натрия, длительность процесса. Недостатком также является трудность регулирования получения Fe (II) и Fe (III) в молярном соотношении 2:1 и необходимость добавления щелочи в системе.
Наиболее близким способом по совокупности признаков к предлагаемому является способ получения магнетита электрохимическим растворением электродов из стали (Ст3) в растворе поваренной соли с концентрацией 50-100 г/м 3 при напряжении 24-36 В и плотности тока 15,6 А/мм 2.
Недостатком указанного способа является высокий расход электроэнергии, необходимость подачи воздуха для окисления Fe2+ до Fe3+, трудность регулирования соотношения образующихся Fe3+:Fe2+ [Патент № 2363064 от 27.07.2009].
Задача заявляемого изобретения - получение магнетита в одном аппарате, без подачи воздуха в систему.
Технический результат - чистота получаемого продукта и экономичность вследствие снижения напряжения на электролизере.
Способ получения магнетита, включает окисление железа при проведении электролиза, где процесс проводят в трехэлектродном двуханодном элетролизере, в который заливают 1M раствор щелочи натрия, подключают ток, причем напряжение составляет 10 В, катодная плотность тока на катоде из титана 0,2 А/см 2, анодная плотность тока на аноде из Ст3 0,3 А/см 2, а на диоксидсвинцовом аноде на титановой основе - 0,1 А/см2, при этом происходит одновременное растворение анода из Ст3 и выделение кислорода на диоксидсвинцовом аноде на титановой основе.
Способ получения магнетита включает размещение в электролизере 3-х электродов: катода из титана и 2-х анодов - из Ст3 и диоксид свинцового электрода. При подключении электрического тока Ст3 растворяется, а на диоксидсвинцовом электроде выделяется кислород. Электролитом служит 1M раствор щелочи натрия. На катоде из титана выделяется газообразный водород.
Растворение железа и образование кислорода на анодных материалах регулируется изменением плотности тока.
Данный способ включает одновременное растворение электрода Ст3 и выделение кислорода на диоксидсвинцовом титановом аноде. В качестве электролита используют щелочь натрия. При этом концентрации Fe2+ и Fe3+ в растворе регулируют по плотностям токов на обоих анодных материалах.
В электролизер заливают 1M раствор щелочи натрия и в него опускают три электрода: катод - титановая пластинка, и пластинки из Ст3 и диоксидсвинца на титановой основе. Плотности тока на анодных материалах соответствуют образованию 2 молей Fe(OH)3 окислением кислородом выделяющимся на диоксидсвинцовом электроде и 1 моля Fe(OH) 2 за счет растворения электрода из Ст3.
Основные реакции, протекающие на электродах, можно представить следующими схемами:
Катод: 2H2O+2e H2+2OH-
Аноды: ст.3-Fe 0 Fe2++2e
Диоксидсвинцовый - 2OH --2e H2O+½O2
В объеме раствора:
Fe2++2OH- Fe(OH)2.
2Fe(OH)2+H 2O+½O2 2Fe(OH)3
2Fe(OH)3+Fe(OH) 2 FeO·Fe2O3(Fe3O 4)+4H2O
Электролиз проводили в электролизере объемом 1 литр при температуре 30°C, катодная плотность тока 0,2 А/см2; анодные: на Ст3 - 0,3 А/см 2; на диоксидсвинцовом - 0,1 А/см2, напряжение на электролизере составляет 10 В. При более высоких плотностях тока электролит нагревается.
Пример. В стеклянную емкость на 1 литр заливают 1M раствор щелочи натрия и помещают туда закрепленную на крышке трехэлектродную систему: катод - титан, аноды - Ст3 и диоксидсвинцовый на титановой основе. Температура в электролизере 30°C. В результате электролиза образуется черный осадок магнетита, идентифицированного рентгенографическим анализом. Выход по току составляет 94-96% магнетита.
Преимуществами данного изобретения являются: отсутствие необходимости использования соли двухвалентного железа; сокращение длительности процесса; легкость регулирования электролиза; невысокий расход электроэнергии, отсутствие необходимости подачи воздуха для окисления железа.
Класс C01G49/08 закись-оксид железа ( Fe3O4 )
Класс C25B1/00 Электролитические способы получения неорганических соединений или неметаллов