способ оценки токсичности продукции из полимерных и текстильных материалов

Классы МПК:C12Q1/02 использующие жизнеспособные микроорганизмы
G01N33/36 текстильных материалов 
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ) (RU)
Приоритеты:
подача заявки:
2012-12-13
публикация патента:

Изобретение относится к биотехнологии. Предложен способ оценки токсичности продукции из полимерных и текстильных материалов. Способ включает использование биосенсора на основе кислородного электрода, иммобилизацию целых клеток бактерий E.coli K-12 на поверхность кислородного электрода. Иммобилизацию осуществляют с помощью полупроницаемой мембраны. После иммобилизации измеряют дыхательную активность микроорганизмов в присутствии пробы и стандартных образцов положительного и отрицательного контроля. Далее рассчитывают индекс токсичности и оценивают токсичность пробы по величине индекса токсичности. Техническим результатом изобретения является упрощение оценки токсичности и улучшение достоверности результатов санитарно-гигиенической экспертизы. 2фиг., 1 табл., 3 пр.

способ оценки токсичности продукции из полимерных и текстильных   материалов, патент № 2518306

способ оценки токсичности продукции из полимерных и текстильных   материалов, патент № 2518306 способ оценки токсичности продукции из полимерных и текстильных   материалов, патент № 2518306

Формула изобретения

Способ оценки токсичности продукции из полимерных и текстильных материалов, заключающийся в том, что используют биосенсор на основе кислородного электрода, иммобилизуют целые клетки микроорганизмов на поверхность кислородного электрода, измеряют дыхательную активность микроорганизмов в присутствии пробы, оценивают токсичность проб, отличающуюся тем, что иммобилизуют целые клетки бактерий E.coli К-12 на поверхность кислородного электрода с помощью полупроницаемой мембраны, измеряют дыхательную активность с помощью термооксиметра, дополнительно используют стандартные образцы положительного и отрицательного контроля, рассчитывают индекс токсичности по следующей формуле:

Т = (Rпроб - Rотр) / (Rпол - Rотр),

где Т - индекс токсичности,

Rпроб - ответ биосенсора на образец анализируемой пробы, О2мкг/дм3 *с;

Rпол - ответ биосенсора на образец положительного контроля, О2мкг/дм3*с;

Rотр - ответ биосенсора на образец отрицательного контроля, О2 мкг/дм3*с,

и оценивают токсичность, учитывая индекс токсичности

Индекс токсичности (Т) Степень токсичности образца
менее 1.0нетоксичен
1.0-10.0токсичен
более 10.0сильнотоксичен

Описание изобретения к патенту

Техническое решение относится к области экологической и

промышленной (профилактической) токсикологии, а именно, к

аналитическому определению токсичности с применением биосенсора.

Изобретение может быть использовано для быстрой оценки индекса

токсичности образцов материалов, изделий и упаковок, включая полимеры и

полимерсодержашие материалы и изделия, а также товары для детей,

изготовленных из полимерных и текстильных материалов, материалов,

контактирующих с пищевыми продуктами (за исключением - целлюлозно-

бумажной продукции).

Известен способ токсиколого-гигиенической оценки материалов, изделий

и объектов окружающей среды, основанный на применении спермы крупного

рогатого скота (КРС) (Биотестирование продукции из полимерных и других

материалов.: Методические указания. - М.: Информационно-издательский

центр Госкомсанэпиднадзора России, 1996. -11 с.). Тест-объектом является КРС,

а тест-реакцией - двигательная активность КСР. Оценка токсичности

производится с применением анализатора токсичности АТ-05, принцип работы

которого основан на анализе микроскопических видеоизображений суспензии

сперматозоидов.

Известен способ определения токсичности полимеров, материалов и

изделий с помощью, основанный на способности специфических

микроорганизмов изменять интенсивность спонтанной биолюминесценции при

наличии в анализируемых пробах токсических веществ различной химической

природы (MP 01.018-07 Методика определения токсичности химических

веществ, полимеров, материалов и изделий с помощью биотеста "Эколюм", MP

от 15.06.2007 N 01.018-07), что регистрирует прибор экологического

(токсикологического) контроля «БИОТОКС».

Оба способа совместно с устройствами позволяет определять острую токсичность. Недостатками этих способов оценки токсичности являются ложноположительные или ложноотрицательные результаты биотестирования, вызванные как специфической реакцией тест-объекта на воздействие токсикантов, так и другими факторами внешней среды. Вследствие этого предпочтительно комплексное использование нескольких биотестов, взаимно дополняющих друг друга по чувствительности к различным группам веществ. Рекомендуется проводить одновременное применение нескольких систем биотестирования, использующих разные жизненные функции (тест-реакции) тест-организмов. Применение дыхательной активности микроорганизмов в качестве тест-реакции на присутствие токсикантов в комбинации с оксиметрами позволяет расширить возможности применения биотестирования.

Наиболее близкими по своим признакам способ и устройство для оценки токсичности, принятыми за прототип являются способ экспресс-определения индекса токсичности с применением биосенсора, описанные в работе авторов изобретения:Чепкова И.Ф., Ануфриев М.А., Понаморева О.Н., Алферов В.А., Решетилов А.Н., Щеглова В.А., Петрова С.Н. Применение биосенсора на основе иммобилизованных микроорганизмов для оценки токсичности продукции бытового назначения и товаров для детей. //Токсикологический вестник. 2010. V. 100, № 1, С. 34-40.

Способ оценки токсичности основан на регистрации дыхательной активности целых клеток микроорганизмов, иммобилизованных на поверхности кислородного электрода. Измерительная система для оценки токсичности состояла из гальванопотенциостата, кислородного электрода и биораспознающего элемента на основе иммобилизованных в агаровый гель целых клеток бактерий Escherichia coli К-12. К недостаткам прототипа относится следующее: 1) аналитический сигнал представлен значениями силы тока (нА), поэтому изменение дыхательной активности целых клеток микроорганизмов выражают как изменение силы тока во времени (нА/мин), а не изменение потребления кислорода (г O2/дм3*мин), что затрудняет

интерпретацию результатов; 2) требуется время для адаптации микроорганизмов в течение суток после иммобилизации в агаровый гель (СКО более 7 %); 3) среднее время проведения единичного измерения с учетом троекратного промывания рецепторного элемента буферным раствором 10-15 мин; 4) неоднородность распределения целых клеток микроорганизмов в агаровом геле приводила к снижению воспроизводимости результатов; 5) стабильность биосенсора (при СКО не более 7%) - не более 14 дней; 6) отсутствие стандартного образца положительного контроля, что не позволяет контролировать качество биосенсорного анализа; 7) отсутствие четкого критерия оценки токсичности.

Задачей предлагаемого технического решения является упрощение способа оценки токсичности продукции из полимерных и текстильных материалов и улучшение достоверности результатов санитарно-гигиенической экспертизы путем увеличения стабильности биораспознающего элемента биосенсора и сравнительной оценке дыхательной активности иммобилизованных микроорганизмов в присутствии анализируемых проб.

Способ оценки токсичности товаров из полимерных и текстильных материалов, заключающийся в том, что используют биосенсор на основе кислородного электрода, иммобилизуют целые клетки микроорганизмов на поверхность кислородного электрода, измеряют дыхательную активность микроорганизмов в присутствии пробы, оценивают токсичность проб, причем иммобилизуют целые клетки бактерий E.coli К-12 на поверхность кислородного электрода с помощью полупроницаемой мембраны, измеряют дыхательную активность с помощью термооксиметра, дополнительно используют стандартные образцы положительного и отрицательного контроля, рассчитывают индекс токсичности по следующей формуле:

Т = (Rпроб - Rотр) / (Rпол - Roтp),

где Т - индекс токсичности,

Rпроб - ответ биосенсора на образец анализируемой пробы, О2мкг/дм3 *с;

Rпол - ответ биосенсора на образец положительного контроля, O2мкг/дм3*с;

Rотр - ответ биосенсора на образец отрицательного контроля, O 2мкг/дм3*с,

и оценивают токсичность пробы по величине индекса токсичности (Т):

Индекс токсичности (Т) Степень токсичности образца
менее 1.0нетоксичен
1.0-10.0токсичен
более 10.0сильнотоксичен

Предложенный способ оценки токсичности характеризуется простотой, быстрым временем анализа (выполняется за 10 минут), достоверностью результатов, а устройство для его реализации - длительным временем функционирования (не менее 30 дней) без потери активности микроорганизмов, иммобилизованных на поверхности кислородного электрода.

Сущность предлагаемого изобретения поясняется рисунками и примерами. На фиг. 1 представлено предлагаемое устройство для оценки токсичности бытовой продукции. На фиг. 2 представлена последовательность действий для иммобилизации целых клеток микроорганизмов на кислородном электроде с помощью полупроницаемой мембраны и схема устройства кислородного электрода с иммобилизованными клетками микроорганизмов.

Предлагаемое устройство содержит магнитную мешалку 1, на которой расположена измерительная кювета 2 с буферным раствором 3, в которую помещен кислородный электрод 4 с иммобилизованными микроорганизмами 5, термооксиметр 6 соединен с кислородным электродом 4 и компьютером 7.

Кислородный электрод с иммобилизованными клетками микроорганизмов состоит из индикаторного электрода (платиновая проволока, запаянная в стекло) 8, электрода сравнения (серебряная проволока, покрытая хлоридом серебра) 9, корпуса электрода 10, газопроницаемой полиэтиленовой мембраны 11, суспензии клеток

микроорганизмов 12; полупроницаемой мембраны 13, фиксирующего кольца 14. На полиэтиленовую мембрану 11 наносят суспензию клеток микроорганизмов 12 объемом 10,0 мм3 . Полупроницаемую мембрану 13 с порами размером 0,2 мкм помещают сверху и фиксируют кольцом 14, обрезают излишки мембраны 13 и собирают электрод. Электрод 4 соединяют с термооксиметром 6 и помещают в измерительную кювету 2, заполненную буферным раствором 3. Способ оценки токсичности заключается в том, что регистрируют дыхательную активность иммобилизованных микроорганизмов с помощью термооксиметра, добавляют определенный объем контрольных или анализируемой проб (водных вытяжек из полимерных или текстильных материалов) и регистрируют изменение дыхательной активности микроорганизмов с помощью термооксиметра 6, результаты изменения содержания кислорода (ответ биосенсора R) выводятся на монитор компьютера 7. Проводят расчет индекса токсичности по формуле:

Т = (Rпроб - Rотр) / (Rпол - Roтp),

где Т - индекс токсичности;

Rпpoб - ответ биосенсора на образец анализируемой пробы, O2мкг/дм3*с;

Rпол - ответ биосенсора на образец положительного контроля (раствор ацетальдегида 2,0 мг/дм3), O2мкг/дм 3*с;

Rотр - ответ биосенсора на образец отрицательного контроля (дистиллированная вода), O2 мкг/дм3*с.

Токсичность оценивают по величине индекса токсичности:

Индекс токсичности (Т) Степень токсичности образца
менее 1.0нетоксичен
1.0-10.0токсичен
более 10.0сильнотоксичен

Наличие причинно-следственной связи между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом показано в таблице 1.

Пример. 1. Подготовка проб. Из рабочих образцов текстильных материалов и одежды вырезают элементарные образцы массой (3,00 ± 0,01) г. Испытуемые товары из полимерных материалов и резины измельчают на кусочки сечением (3х3)-(5х5) мм и отбирают элементарные образцы массой (3,00 ± 0,01) г. Элементарные образцы перемещают в стаканчики для взвешивания (бюксы) диаметром 30 мм с притертой пробкой, заливают 10 см дистиллированной воды, тщательно перемешивают, добиваясь полного смачивания образцов водой. Экстракцию всех образцов проводят в суховоздушном термостате при температуре 37°С в течение 1 ч.

Пример 2. Приготовление стандартного образца положительного контроля. Стандартная проба положительного контроля - раствор ацетальдегида 2,0 мг/дм 3 . Этот раствор готовят из основного раствора ацетальдегида с массовой концентрацией 100 мг/дм3. В мерную колбу вместимостью 50 см3 вносят 1,0 см3 основного раствора, доводят объем до метки дистиллированной водой и тщательно перемешивают. Для приготовления основного раствора ацетальдегида в мерную колбу вместимостью 100 см3 добавляют 50 см 3 дистиллированной воды, охлажденной до (10-15)°С. Затем колбу переносят на аналитические весы и с помощью пипет-дозатора добавляют (0,0100±0,0005) г ацетальдегида. Когда температура раствора в колбе достигнет 20°С, доводят объём до метки дистиллированной водой.

Пример 3. Оценка токсичности. Кислородный электрод с иммобилизованными клетками бактерий E.coli К-12, погружают в измерительную кювету объемом 5 см3 с 1/15 моль/дм3 Na-K-фосфатного буферного раствора со значением рН 7,0 и регистрируют силу тока, отражающего содержание кислорода в среде (фоновое) с термооксиметра. Затем вносят последовательно пробы 100 мм3 : контрольные пробы (стандартные образцы отрицательного и положительного контроля) и анализируемую пробу (водную вытяжку из полимерных или текстильных материалов). Измерения проводят при непрерывном перемешивании с

помощью магнитной мешалки при комнатной температуре. Стандартная проба положительного контроля - раствор ацетальдегида 2,0 мг/дм3. Стандартная отрицательная проба - дистиллированная вода. Между измерениями проб кювету и электрод промывают тремя порциями фонового раствора по 4 см3 с интервалом в 5 мин. Ответы биосенсора, выраженные в О2мкг/дм 3*с, используют для расчета индекса токсичности: Т = (Rпроб - Rотр) / (Rпол - Rотр), где Т - индекс токсичности, Rпроб - ответ биосенсора на образец анализируемой пробы, О2 мкг/дм3*с; Rпол - ответ биосенсора на образец положительного контроля, О2мкг/дм3*с; Rотр - ответ биосенсора на образец отрицательного контроля, О2мкг/дм3 *с. Токсичность пробы оценивают по величине индекса токсичности:

Индекс токсичности (Т) Степень токсичности образца
менее 1.0нетоксичен
1.0-10.0токсичен
более 10.0сильнотоксичен

Предлагаемый способ оценки токсичности товаров из полимерных и текстильных материалов позволил упростить оценку токсичности и улучшить достоверность результатов санитарно-гигиенической экспертизы благодаря увеличению стабильности биораспознающего элемента до 30 дней функционирования при СКО не более 7%, возможности проведения анализа в первый день после иммобилизации микроорганизмов, использованию для оценки индекса токсичности Т.

Таблица 1
Сравнение прототипа и предложенного изобретения
Виды технического результата и их размерностьПоказатели фактические или расчетные Объяснение улучшения показателей
ПрототипЗаявляемого устройства
Возможность проведения анализа в первый день после иммобилизации микроорганизмов Требуется время для адаптации микроорганизмов в течение суток (среднеквадратичное отклонение более 7%) Возможно использование биосенсора для анализа в первый день после иммобилизации микроорганизмов (среднеквадратичное отклонение менее 7%)В прототипе клетки микроорганизмов при иммобилизации в агаровый гель подвергаются нагреванию до 50-60°С, с учетом того, что хранятся они при низких температурах, такое воздействие высокой температуры приводит к стрессу и требуется время для адаптации. В заявляемом устройстве воздействие высоких температур исключено.
Среднее время проведения единичного измерения с учетом троекратного промывания рецепторного10-15 мин 5-10 мин Разница обусловлена тем, что в заявляемом устройстве нет механической преграды в виде агарового геля (как в прототипе), что увеличивает скорость диффузии кислорода и анализируемых веществ в пробе к ферментным системам клеток,
элемента буферным растворомспособ оценки токсичности продукции из полимерных и текстильных   материалов, патент № 2518306 способ оценки токсичности продукции из полимерных и текстильных   материалов, патент № 2518306 это сокращает время проведения анализа, увеличивает аналитический сигнал и чувствительность анализа
Долговременная стабильность, при среднеквадратичное отклонение не более 7% Не более 14 днейНе менее 30 днейВ прототипе клетки микроорганизмов вымываются из агарового геля, который постепенно разрушается, агаровый гель взаимодействует с веществами пробы, что снижает сходимость метода и время функционирования иммобилизованных микроорганизмов

Класс C12Q1/02 использующие жизнеспособные микроорганизмы

способ повышения чувствительности микроорганизмов к антимикробным препаратам -  патент 2529367 (27.09.2014)
способ видовой дифференциации жизнеспособных родококков, иммобилизованных в гелевом носителе -  патент 2525934 (20.08.2014)
способ оценки детоксикационной активности черноземов в агроценозах -  патент 2525677 (20.08.2014)
способ выращивания колоний микробных клеток и устройство для его реализации -  патент 2522005 (10.07.2014)
способ учета нефтеокисляющих бактерий в морской воде -  патент 2520084 (20.06.2014)
способ определения неспецифической устойчивости патогенных микроогранизмов к антибиотикам на основании измерения каталитической активности фосфодиэстераз, расщепляющих циклический дигуанозинмонофосфат -  патент 2518249 (10.06.2014)
способ определения активации плазминогена бактериями в условиях in vitro -  патент 2514662 (27.04.2014)
контейнер для изоляции и идентификации микроорганизма -  патент 2510844 (10.04.2014)
способ количественной оценки бактерицидной активности дезинфицирующих средств -  патент 2510610 (10.04.2014)
способ биосорбционной очистки воды от ионов тяжелых металлов с помощью дрожжей saccharomyces cerevisiae -  патент 2509734 (20.03.2014)

Класс G01N33/36 текстильных материалов 

способ определения драпируемости материалов для одежды -  патент 2528876 (20.09.2014)
способ определения закрепленности петли в структуре трикотажного полотна -  патент 2526112 (20.08.2014)
способ бесконтактной полиполяризационной идентификации и определения состава и качества шерсти и растительных волокон -  патент 2524553 (27.07.2014)
устройство для оценки раздвигаемости нитей текстильных материалов -  патент 2519028 (10.06.2014)
устройство для оценки повреждаемости нитей текстильных материалов при шитье -  патент 2516894 (20.05.2014)
способ измерения геометрических параметров структуры текстильных материалов -  патент 2508537 (27.02.2014)
способ определения силы трения текстильных полотен -  патент 2502982 (27.12.2013)
устройство для измерения продольной и поперечной деформации легкодеформируемых трикотажных полотен -  патент 2499257 (20.11.2013)
способ оценки миграции пухо-перовой смеси и устройство для его осуществления -  патент 2497113 (27.10.2013)
емкостный способ определения неравномерности линейной плотности продуктов прядения -  патент 2496107 (20.10.2013)
Наверх