способ неразрушающего контроля труб

Классы МПК:G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Иркутский научно-исследовательский и конструкторский институт химического и нефтяного машиностроения" (ОАО "ИркутскНИИхиммаш") (RU)
Приоритеты:
подача заявки:
2013-01-10
публикация патента:

Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что излучают внутрь трубы с одного ее конца серию повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектируют с помощью микрофона отраженные от дефектов внутреннего объема трубы сигналы, измеряют отраженные сигналы и усредняют результаты по всем измерениям серии сигналов, определяют характер дефекта по амплитудно-временным характеристикам усредненного сигнала, при этом длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала. Технический результат: обеспечение возможности исключения влияния посторонних шумов и реверберации на результат измерения.

Формула изобретения

Способ неразрушающего контроля труб, включающий излучение внутрь трубы с одного ее конца серии повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектирование с помощью микрофона отраженных от дефектов внутреннего объема трубы сигналов, измерение отраженных сигналов и усреднение результатов по всем измерениям серии сигналов, определение характера дефекта по амплитудно-временным характеристикам усредненного сигнала, отличающийся тем, что длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала.

Описание изобретения к патенту

Изобретение может быть использовано для неразрушающего контроля, например, для определения состояния внутренней поверхности стенок трубы, изменения ее внутреннего сечения, засорения, закупорки, разрыва.

Сущность известного способа неразрушающего контроля труб, в общем случае, заключается в следующем. Внутрь объекта контроля, например, внутрь трубы с одного ее конца, излучают короткий зондирующий акустический сигнал, который, распространяясь внутри трубы, отражается от всех неоднородностей поперечного сечения трубы. Эти отраженные акустические сигналы возвращаются назад к началу трубы и улавливаются микрофоном. При этом измеряют их амплитудно-временные характеристики. По амплитудно-временным характеристикам судят о состоянии внутренней стенки объекта контроля и о расстоянии до неоднородности. Сигнал с микрофона измеряют все время прохождения зондирующего сигнала до дальнего конца трубы и обратно. Затем проводят следующее измерение. При проведении указанных измерений на полезный акустический сигнал могут накладываться случайные акустические шумы из внешней среды.

В известном способе неразрушающего контроля труб [1] для снижения шумов применяется сложная цифровая обработка принимаемого сигнала. Это усложняет известный способ и делает процедуру измерения слишком длительной - 10 секунд на контролирование одной трубы [2].

Наиболее близким предлагаемому известным способом является способ неразрушающего контроля труб [3], включающий излучение внутрь трубы с одного ее конца серии повторяющихся зондирующих акустических сигналов, разделенных интервалами времени, детектирование с помощью микрофона отраженных от дефектов внутреннего объема трубы сигналов, измерение отраженных сигналов и усреднение результатов по всем измерениям серии, определение характера дефекта по амплитудно-временным характеристикам усредненного сигнала. В известном способе для устранения влияния случайных шумов измерения в серии повторяют N раз. Результаты N измерений усредняют. Тем самым упрощается процедура измерений, но время проведения циклов измерений с усреднением ограничивается снизу временем затухания реверберации акустического сигнала в трубе. Специфика исследования объектов способом акустической эхометрии, имеющих ограниченные размеры (т.е. не открытое пространство), как, например, труба длиной от 1 до 30 м, заключается в наличии сильного отражения сигнала от дальнего конца трубы. Отраженный акустический сигнал возвращается к началу трубы, вновь отражается (теперь уже от начала трубы) и начинает второй обход трубы, выполняя функции паразитного зондирующего сигнала. В зависимости от длины трубы и параметров затухания акустического сигнала, повторных обходов может быть несколько. До полного затухания реверберации (до уровня шумов) предыдущего акустического сигнала генерация следующего зондирующего сигнала невозможна, так как регистрация акустического отклика покажет наличие паразитных сигналов не отличимых от сигнала дефекта. Поэтому проведение измерений с усреднением по многим реализациям требует включения в интервал времени между зондирующими акустическими сигналами времени задержки для полного затухания реверберации акустического сигнала. В известном способе [3] создают задержку зондирующего акустического сигнала перед каждым новым его повторением в серии, составляющую 180 мс. В воздухе за это время звук проходит расстояние 60 м, в то время как на само однократное зондирование трубы длиной, скажем, 5 м, при скорости звука 340 м/с требуется 30 мс. В этом случае на проведение циклов измерений с усреднением по 32 реализациям этих измерений потребуется около 6 с, из них только одна секунда приходится на собственно измерение, а остальные пять - на ожидание полного затухания реверберации зондирующего сигнала. При обследовании теплообменника с количеством труб 2000 штук длиной 5 м время, уходящее только на ожидание, составит около трех часов.

Задачей заявляемого изобретения является сокращение времени на проведение измерения.

Поставленная задача решается тем, что в способе неразрушающего контроля труб, включающем излучение внутрь трубы с одного ее конца серии повторяющихся зондирующих акустических сигналов, разделенных интервалами времени, между их повторами в серии, детектирование с помощью микрофона отраженных от дефектов внутреннего объема трубы сигналов, измерение отраженных сигналов и усреднение результатов по всем измерениям серии сигналов, определение характера дефекта по амплитудно-временным характеристикам усредненного сигнала, согласно предлагаемому изобретению длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала.

Технический результат изобретения выражается в исключении влияния посторонних шумов и реверберации на результат измерения за счет того, что длительность интервалов времени между повторами зондирующих акустических сигналов при накоплении результатов измерения и последующем усреднении изменяют от сигнала к сигналу. Это позволяет обойтись без задержки для полного затухания сигнала перед очередным зондированием в серии, и время проведения циклов измерений с усреднением ограничивается снизу временем одного полного обхода трубы, а не временем затухания реверберации акустического сигнала в трубе.

Предложенный способ неразрушающего контроля труб осуществляется следующим образом.

С помощью источника акустических сигналов, расположенного с одного конца исследуемой трубы, излучают внутрь трубы серию повторяющихся зондирующих акустических сигналов, разделенных между собой интервалами времени. Длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала. Количество зондирующих акустических сигналов в серии может быть разным. Его значение обычно кратно 2 и выбирается в пределах 8-64 раз. Из опыта исследований известно, что усреднение менее чем по 8 циклам измерений не эффективно при сильном акустическом шуме (помехах), а более 64 не улучшает существенно отношение сигнал/шум, приводя к значительным затратам времени. Экспериментально установлено оптимальное значение количества сигналов в серии 16способ неразрушающего контроля труб, патент № 2517774 32.

Для реализации предлагаемого способа может быть использован любой закон изменения длительности указанного интервала времени, например, в виде арифметической прогрессии. Но при этом минимальная длительность интервала времени определяется длиной трубы и должна быть не менее: Т=2L/c+способ неразрушающего контроля труб, патент № 2517774 (где Т - длительность интервала времени; L - длина трубы, м; с - скорость звука в воздухе, равная 340 м/с; способ неразрушающего контроля труб, патент № 2517774 - полная длительность зондирующего акустического сигнала, мс). При этом величину изменения длительности интервала времени способ неразрушающего контроля труб, патент № 2517774 Т выбирают большей или равной способ неразрушающего контроля труб, патент № 2517774 . Если способ неразрушающего контроля труб, патент № 2517774 T будет меньше способ неразрушающего контроля труб, патент № 2517774 , то в случае возможного появления паразитного отражения на каком-либо этапе накопления, это приведет к наложению его в последующих измерениях с его повтором, уменьшая отношение сигнал/помеха. При изменении длительности интервала времени Т по закону арифметической прогрессии, т.е. с постоянным приращением интервала времени способ неразрушающего контроля труб, патент № 2517774 Т от сигнала к сигналу, минимальная продолжительность цикла измерения с N повторами зондирующих акустических сигналов в серии равна tизм. мин=[2L/c+способ неразрушающего контроля труб, патент № 2517774 +способ неразрушающего контроля труб, патент № 2517774 T(N-2)/2](N-1).

Отраженные от дефектов и неоднородностей внутреннего объема трубы акустические сигналы возвращаются назад к началу трубы и детектируются с помощью микрофона. Производят усреднение результатов по всем измерениям серии сигналов. При этом измеряют их амплитудно-временные характеристики. По амплитудно-временным характеристикам усредненного сигнала судят о состоянии внутренней стенки исследуемой трубы и о расстоянии до неоднородности.

Пример 1.

Длина трубы L=5 м; N=16; скорость звука с=340 м/с; способ неразрушающего контроля труб, патент № 2517774 =1 мс; Т1=2L/c+способ неразрушающего контроля труб, патент № 2517774 =10/340+0,001 с; способ неразрушающего контроля труб, патент № 2517774 T=0,001 с. Минимальное время одного измерения с усреднением по 16 циклам равно tизм. мин=[2L/c+способ неразрушающего контроля труб, патент № 2517774 +способ неразрушающего контроля труб, патент № 2517774 T(N-2)/2](N-1)=(10/340+0,001+0,001·14/2)15=0,56 с.

Пример 2.

Длина трубы L=5 м; N=32; способ неразрушающего контроля труб, патент № 2517774 =1 мс; Т1=2L/c+способ неразрушающего контроля труб, патент № 2517774 =10/340+0,001 с; способ неразрушающего контроля труб, патент № 2517774 T=0,001 с. Минимальное время одного измерения с усреднением по 32 циклам равно

tизм.мин=[2L/c+способ неразрушающего контроля труб, патент № 2517774 +способ неразрушающего контроля труб, патент № 2517774 T(N-2)/2](N-1)=(10/340+0,001+0,001·30/2)31=1,41 с.

Пример 3.

Длина трубы L=30 м; N=16; скорость звука с=340 м/с; способ неразрушающего контроля труб, патент № 2517774 =1 мс; Т1=2L/c+способ неразрушающего контроля труб, патент № 2517774 =60/340+0,001 с; способ неразрушающего контроля труб, патент № 2517774 Т=0,001 с. Минимальное время одного измерения с усреднением по 16 циклам равно tизм.мин=[2L/c+способ неразрушающего контроля труб, патент № 2517774 +способ неразрушающего контроля труб, патент № 2517774 T{N-2)/2](N-1)=(60/340+0,001+0,001·14/2)15=2,77 с.

Примеры реализации предложенного способа показывают, что в случае исследования трубы длиной 30 м время измерения в три с лишним раза меньше по сравнению с прототипом.

Источники информации

1. Патент US 7677103 В2, Системы и методы неразрушающего контроля трубных систем. Амир Н. и др. Acousticeye Ltd., 31 июля 2006 г.

(Patent US 7677103 В2, Systems and methods for non-destructive testing of tubular systems. Amir and all, Acousticeye Ltd., Jul. 31, 2006).

2. Н.Амир, О.Барзилэй, А.Йефет, Т.Печтер. Обследование труб конденсора с использованием акустической импульсной рефлектометрии, POWER2008-60169, Труды конференции POWER2008 ASME Power 2008, 22-24 июля 2008 г., Орландо, Флорида, США.

(N.Amir, O.Barzelay, A.Yefet, T.Pechter. Condenser tube examination using acoustic pulse reflectometry, POWER2008-60169, Proceeding of POWER2008 ASME Power 2008, July 22-24, 2008 Orlando, Florida, USA).

3. Д.Б.Шарп. Увеличение длины трубных объектов, которые могут обследоваться с использованием акустической импульсной рефлектометрии. ж-л «Measurement Science and Technology)), том 9, № 9, 1998 г., с.1469-1479.

(D.B.Sharp. Increasing the length of tubular object that can be measured using acoustic pulse reflectometry. Measurement Science and Technology (1998), 9(9), pp.1469-1479).

Класс G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы

инспекционное устройство для обнаружения посторонних веществ -  патент 2529667 (27.09.2014)
способ измерения продольного и сдвигового импендансов жидкостей -  патент 2529634 (27.09.2014)
устройство контроля при контролировании посторонних веществ -  патент 2529585 (27.09.2014)
способ акустико-эмиссионного контроля качества сварных стыков рельсов и устройство для его осуществления -  патент 2528586 (20.09.2014)
система ультразвукового контроля -  патент 2528578 (20.09.2014)
образец для тестирования и настройки установки ультразвукового контроля листового проката -  патент 2528111 (10.09.2014)
способ непрерывного контроля средней влажности волокон в волоконной массе -  патент 2528043 (10.09.2014)
способ лабораторного контроля влажности волокон в массе -  патент 2528041 (10.09.2014)
способ лабораторного контроля средней тонины волокон в массе -  патент 2527146 (27.08.2014)
способ измерения влажности нефти -  патент 2527138 (27.08.2014)
Наверх