термогравиметрическая установка

Классы МПК:G01N23/00 Исследование или анализ материалов радиационными методами, не отнесенными к группе  21/00 или  22/00, например с помощью рентгеновского излучения, нейтронного излучения
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)
Приоритеты:
подача заявки:
2012-10-22
публикация патента:

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему, включающую помещенную в высокотемпературную печь реакционную камеру, датчик парциального давления кислорода, термопару, высокочувствительные весы с держателем тигля для образца, систему создания и поддержания газовой атмосферы с заданным парциальным давлением кислорода. Причем система создания и поддержания газовой атмосферы с заданным парциальным давлением кислорода включает электрохимический кислородный насос, помещенный в высокотемпературную печь, герметично и замкнуто соединенный с реакционной трубкой измерительной системы посредством газопроводов с циркуляционным насосом. При этом датчик парциального давления кислорода, электрохимический насос и печь электрохимического насоса подключены к автоматически регулирующему их функции контроллеру. Техническим результатом является повышение надежности получаемых результатов в термогравиметрической установке, упрощение конструкции, снижение затрат на ее производство и обеспечение компактности ее размещения в лаборатории. 1 з.п. ф-лы, 1 ил. термогравиметрическая установка, патент № 2515333

термогравиметрическая установка, патент № 2515333

Формула изобретения

1. Термогравиметрическая установка, содержащая измерительную систему, включающую помещенную в высокотемпературную печь реакционную камеру, датчик парциального давления кислорода, термопару, высокочувствительные весы с держателем тигля для образца, систему создания газовой атмосферы с заданным парциальным давлением кислорода, отличающаяся тем, что в качестве системы создания газовой атмосферы с заданным парциальным давлением кислорода использован электрохимический кислородный насос, помещенный в высокотемпературную печь, герметично и замкнуто соединенный с реакционной трубкой измерительной системы посредством газопроводов с циркуляционным насосом, при этом датчик парциального давления кислорода, электрохимический насос и печь электрохимического насоса подключены к автоматически регулирующему их функции контроллеру.

2. Термогравиметрическая установка по п.1, отличающаяся тем, что весы с держателем тигля для образца и термопарой расположены ниже реакционной камеры и высокотемпературной печи.

Описание изобретения к патенту

Изобретение относится к области материаловедения твердых оксидных материалов и может быть использовано для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода окружающей газовой атмосферы.

Известна установка для дифференциально-термического и термогравиметрического анализа (Патент РФ на полезную модель № 76135 Ul, G01N 25/02, опубликован 10.09.2008), содержащая печь с реакционной камерой, измерители температуры пробы, эталона и температуры среды внутри печи, нагревательный элемент печи из плавленого кварца из двух тонкостенных вставленных друг в друга цилиндров, между которыми расположена нагревательная спираль, при этом внутренний цилиндр выполнен с вертикальными отверстиями в стенках для улучшения воздушного теплообмена; между теплоизолирующим слоем печи из легкой шамотной керамики и нагревательным элементом создана воздушная оболочка, сообщающаяся с окружающей атмосферой через специальные отверстия, закрываемые автоматически при нагреве, и открываемые при охлаждении; компьютер, управляющий тепловым режимом и режимом измерений, сбором и визуализацией данных, их обработкой, и блок управления, в которой измеритель температуры жестко закреплен на дополнительно введенном датчике измерения веса образца, который электрически связан с дополнительным блоком усиления сигнала и через дополнительный канал аналого-цифрового преобразования - с компьютером, в котором добавлен модуль обработки данных изменения веса образца.

Недостатком этой полезной модели является отсутствие возможности создания и контроля парциального давления кислорода в газовой атмосфере, которая необходима для исследования кислородной нестехиометрии в твердых оксидных материалах в зависимости от температуры и парциального давления кислорода.

Известна термогравиметрическая установка-прототип (S.Onuma, К.Yashiro, S.Miyoshi, A.Kaimai, Н.Matsumoto, Y.Nigara, Т.Kawada, J.Mizusaki, K.Kawamura, N.Sakai, H.Yokokawa Oxygen nonstoichiometry of the perovskite-type oxide Lai-xCaxCrO3-термогравиметрическая установка, патент № 2515333 (x=0.1, 0.2, 0.3). // Solid State Ionics. 2004. V. 174. P. 287-293), предназначенная для исследования кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода, содержащая измерительную систему, включающую помещенную в высокотемпературную печь реакционную трубку, датчик парциального давления кислорода, термопару и высокочувствительные электронные весы с держателем образца, проточную систему создания атмосферы с заданным парциальным давлением кислорода, которая содержит газосмесительную систему для приготовления смесей газов 02/Аг, СО/С02 и Н2, Н20/Аг с различным количественным соотношением, датчики парциального давления кислорода на входе газовой смеси в реакционную трубку и ее выходе из реакционной трубки.

Недостатками этой установки являются:

-громоздкость и сложность организации системы создания и контроля парциального давления кислорода, устроенной по проточному типу, а именно:

для создания газовой атмосферы с заданным парциальным давлением кислорода требуется использование различных газовых смесей O2/Аr, СО/СО2 и H2 /Ar, т.е. наличие баллонов с взрывоопасными газами Н2 , O2 и токсичным СО, для безопасного хранения и использования которых требуются специальные условия и меры предосторожности,

требуется дополнительный контроль парциального давления кислорода для потока газовой смеси, выходящего из газосмесительной системы в реакционную камеру и выходящего из реакционной камеры во внешнюю среду с помощью установки двух дополнительных датчиков парциального давления кислорода и соответствующих высокотемпературных печей,

-расположение измерительных весов над реакционной камерой, благодаря чему восходящие конвективные потоки горячего газа могут влиять на показания весов.

Задачей предлагаемого изобретения является значительное конструкционное упрощение системы создания заданного парциального давления кислорода газовой атмосферы и повышение надежности получаемых результатов в термогравиметрической установке для определения кислородной нестехиометрии твердооксидных материалов по изменению их массы в зависимости от температуры и парциального давления кислорода.

Поставленная задача решается за счет того, что в термогравиметрической установке, содержащей измерительную систему, включающую помещенную в высокотемпературную печь реакционную камеру, датчик парциального давления кислорода, термопару, высокочувствительные весы с держателем тигля для образца, систему создания газовой атмосферы с заданным парциальным давлением кислорода, в качестве системы создания газовой атмосферы с заданным парциальным давлением кислорода использован электрохимический кислородный насос, помещенный в высокотемпературную печь, герметично и замкнуто соединенный с реакционной трубкой измерительной системы посредством газопроводов с циркуляционным насосом, при этом датчик парциального давления кислорода, электрохимический насос и печь электрохимического насоса подключены к автоматически регулирующему их функции контроллеру.

Кроме того, в предлагаемой установке весы с держателем тигля для образца и термопарой расположены внизу реакционной камеры и высокотемпературной печи.

Предлагаемая термогравиметрическая установка может осуществлять измерения массы твердых оксидных материалов одновременно в зависимости от температуры и парциального давления кислорода газовой атмосферы в интервале температур от 650°С до 1100°С и парциальных давлений кислорода от 10-20 атм до 1 атм. Используемая в установке замкнутая система создания газовой атмосферы с заданным парциальным давлением кислорода не требует применения дорогостоящих систем смешения газов, баллонов с различными газами и дополнительных датчиков парциального давления кислорода, что значительно упрощает конструкцию самой установки, снижает затраты на ее производство и обеспечивает компактность ее размещения в лаборатории. Расположение весов в термостатируемом кожухе ниже реакционной камеры позволяет избежать погрешностей измерения массы образца, вызванные конвекцией горячей газовой атмосферы, которая неизбежна в случае расположения весов над реакционной камерой.

Сущность изобретения поясняется чертежом, на котором изображена схема термогравиметрической установки для измерения массы твердооксидных материалов в зависимости от температуры и парциального давления кислорода.

Предлагаемая установка включает в себя высокочувствительные весы 1 в термостатируемом кожухе 2, реакционную камеру 3, внутри которой находятся: держатель тигля 4, жестко связанный с измерительным плечом 5 высокочувствительных весов 1, тигель с образцом 6, термопара 7 и датчик парциального давления кислорода 8. Снаружи реакционной камеры 3 располагается высокотемпературная электропечь 9. Посредством газопроводов 10 с циркуляционным насосом 11 реакционная камера 3 замкнуто сообщается с электрохимическим кислородным насосом 12, помещенным в высокотемпературную электропечь 13. Контроллер 14 соединен с датчиком парциального давления кислорода 8 и электрохимическим кислородным насосом 12 с помощью электрических проводов 15, обеспечивая регулирование парциального давления кислорода внутри замкнутого контура реакционной камеры 3 и газопроводов 10.

Датчик парциального давления кислорода 8 выполнен в виде газоплотной пробирки из стабилизированного диоксида циркония с нанесенными с обеих сторон электродами, располагается в непосредственной близости от тигля с образцом 6. Электрохимический кислородный насос 12 выполнен в виде газоплотной трубки из стабилизированного диоксида циркония с нанесенными с обеих сторон электродами. Внешняя сторона датчика парциального давления кислорода 8 и внутренняя сторона электрохимического кислородного насоса 12 омываются газовой атмосферой, замкнуто циркулирующей внутри реакционной камеры 3 и газопроводов 10. Внутренняя сторона датчика парциального давления кислорода 8 и внешняя сторона электрохимического кислородного насоса 12 омываются внешней воздушной атмосферой.

В качестве измерительной системы (за исключением встроенного в реакционную камеру 3 датчика парциального давления кислорода 8, подсоединенного к контроллеру 14) могут быть использованы термогравиметрическая установка или термоанализатор, способный работать в режиме термогравиметрического анализа при высоких температурах.

Работает устройство следующим образом.

Предварительно взвешенный тигель с образцом 6 известной массы устанавливается на держатель тигля 4, жестко соединенный с измерительным плечом 5 высокочувствительных весов 1, с помощью которых происходит измерение массы образца. Температура образца внутри реакционной камеры 3 измеряется с помощью термопары 7 и поддерживается электропечью 9.

Необходимое парциальное давление кислорода газовой атмосферы в реакционной камере 3 создается и автоматически поддерживается контроллером 14. При этом с помощью датчика парциального давления кислорода 8 фиксируются текущие значения парциального давления кислорода в газовой атмосфере реакционной камеры 3, а электрохимический кислородный насос 12 изменяет текущее значение парциального давления кислорода, приближая его к заданной величине. Для эффективной работы электрохимического кислородного насоса 12 его нагревают до постоянной температуры не ниже 800°С с помощью электропечи 13, работа которой регулируется контроллером 14. Циркуляционный насос 11 обеспечивает перемешивание газовой атмосферы между реакционной камерой 3 и внутренней областью электрохимического кислородного насоса 12, минимизируя тем самым градиент парциального давления кислорода, возникающий между электрохимическим насосом 12 и датчиком парциального давления кислорода 8 в процессе регулирования и поддержания заданного парциального давления кислорода в замкнутом контуре.

Для измерения массы образца исследуемого оксида в зависимости от температуры и парциального давления кислорода выполняется следующая последовательность действий.

Шаг 1. Выбирают значения температур и парциальных давлений кислорода, при которых необходимо провести исследования образца, и составляют план измерений.

Шаг 2. Разогревают электропечь 13 до температуры 800-900°С для обеспечения эффективной работы электрохимического кислородного насоса 12 и включают циркуляционный насос 11.

Шаг 3. Предварительно взвешенные на аналитических весах тигель с образцом 6 устанавливаются сверху на держатель тигля 4.

Шаг 4. С помощью электропечи 9 нагревают тигель с образцом 6 до заданной температуры.

Шаг 5. С помощью контроллера 14 задают необходимое парциальное давление кислорода внутри реакционной камеры 3.

Шаг 6. По достижении постоянных во времени значений параметров среды - температуры образца и парциального давления кислорода газовой атмосферы в реакционной камере 3 - следят за изменением массы образца.

Шаг 7. При достижении постоянства во времени всех трех измеряемых параметров - температуры образца, парциального давления кислорода газовой атмосферы и массы образца - записывают значения в лабораторный журнал.

Шаг 8. При необходимости измерения массы образца при других значениях парциального давления кислорода газовой атмосферы и/или температуры последовательно выполняют действия с шага 4 по шаг 7.

Шаг 9. Для учета влияния выталкивающей силы на измерения массы исследуемого образца выполняют аналогичные измерения на эталонном образце. При этом должны выполняться следующие условия:

абсолютная масса эталонного образца должна быть постоянной вне зависимости от его температуры и парциального давления кислорода газовой атмосферы;

объем эталонного образца в тигле должен соответствовать объему исследуемого образца оксида;

внешние условия окружающей эталонный образец среды - значения температур и парциальных давлений кислорода газовой атмосферы - должны быть идентичны условиям, при которых проводились измерения исследуемого образца.

Шаг 10. Производят коррекцию значений масс исследуемого образца по эталонному образцу для заданных в эксперименте температур и парциальных давлений кислорода газовой атмосферы.

Класс G01N23/00 Исследование или анализ материалов радиационными методами, не отнесенными к группе  21/00 или  22/00, например с помощью рентгеновского излучения, нейтронного излучения

установка для рентгеновского контроля сварных швов цилиндрических изделий -  патент 2529754 (27.09.2014)
способ определения загрязненности неметаллическими включениями стальных изделий -  патент 2526227 (20.08.2014)
устройство для осуществления контроля шероховатости поверхности -  патент 2524792 (10.08.2014)
мобильный обнаружитель опасных скрытых веществ (варианты) -  патент 2524754 (10.08.2014)
рентгеноспектральный анализ негомогенных материалов -  патент 2524559 (27.07.2014)
способ определения концентрации элемента в веществе сложного химического состава -  патент 2524454 (27.07.2014)
способ измерения поверхностной плотности преимущественно гетерогенных грунтов -  патент 2524042 (27.07.2014)
усовершенствованная система безопасности для досмотра людей -  патент 2523771 (20.07.2014)
способ изготовления эталонов для рентгенофлуоресцентного анализа состава тонких пленок малокомпонентных твердых растворов и сплавов -  патент 2523757 (20.07.2014)
установка для проверки объектов посредством электромагнитных лучей, прежде всего рентгеновских лучей -  патент 2523609 (20.07.2014)
Наверх