способ биосорбционной очистки воды от ионов тяжелых металлов с помощью дрожжей saccharomyces cerevisiae
Классы МПК: | C02F3/34 отличающаяся используемыми микроорганизмами C02F103/16 от металлургических процессов, те от производства, очистки или обработки металлов, например гальванические стоки C12Q1/02 использующие жизнеспособные микроорганизмы C12R1/865 Saccharomyces cerevisiae |
Автор(ы): | Лыков Игорь Николаевич (RU), Гаранин Роман Анатольевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Калужский Государственный Университет им. К.Э. Циолковского" (RU) |
Приоритеты: |
подача заявки:
2012-02-29 публикация патента:
20.03.2014 |
Изобретение относится к биотехнологии и может быть использовано при биологической очистке сточных вод гальванических цехов от солей тяжелых металлов. Способ предусматривает внесение в сточную воду биомассы дрожжей в виде отходов пивоваренных производств, содержащих ассоциацию дрожжей различных штаммов Saccharomyces cerevisiae с жизнеспособностью 90-95% в заданном количестве. Перемешивание биомассы дрожжей со сточной водой с получением суспензии. Выдерживание полученной суспензии в течение 8 часов при температуре от 10°С до 29°С и рН раствора 5,5-8,0 с дальнейшей утилизацией отработанных дрожжей, содержащих тяжелые металлы, путем обработки их известью Са(ОН)2, при соотношении биомасса дрожжей:известь, равном 1:5-8 с получением смеси. Полученную смесь подвергают влажной обработке при температуре 90°С в течение одного часа, с последующей изоляцией полученной смеси, содержащей тяжелые металлы, в бетонном тесте. Изобретение позволяет повысить эффективность очистки сточных вод от ионов тяжелых металлов. 3 табл., 3 пр.
Формула изобретения
Способ биосорбционной очистки воды от ионов тяжелых металлов с помощью дрожжей Saccharomyces cerevisiae, предусматривающий внесение в сточную воду биомассы дрожжей в виде отходов пивоваренных производств, содержащих ассоциацию дрожжей различных штаммов Saccharomyces cerevisia с жизнеспособностью 90-95% в количестве 10 г/дм3 сточной воды, перемешивание биомассы дрожжей со сточной водой с получением суспензии, выдерживание полученной суспензии в течение 8 ч при температуре от 10°С до 29°С и рН раствора 5,5-8,0 с дальнейшей утилизацией отработанных дрожжей, содержащей тяжелые металлы, путем обработки их известью Са(ОН) 2, при соотношении биомасса дрожжей:известь, равном 1:5-8, с получением смеси, при этом утилизируемую смесь подвергают влажной обработке при температуре 90°С в течение одного часа с последующей изоляцией полученной смеси, содержащей тяжелые металлы, в бетонной смеси.
Описание изобретения к патенту
Изобретение относится к очистке промышленных сточных вод от ионов тяжелых металлов и может быть использовано при биологической очистке сточных вод гальванических цехов машиностроительных предприятий, металлургических предприятий и предприятий с термическим производством от солей тяжелых металлов.
Способ заключается в использовании биомассы живых пивоваренных дрожжей Saccharomyces cerevisiae в концентрации 10 г/дм3 для сорбции тяжелых металлов. Удаление тяжелых металлов из сточных вод является одной из основных экологических проблем. В последние годы она была решена с использованием микроорганизмов в качестве средства для извлечения ионов тяжелых металлов. В этой связи изучали кинетику роста и сорбции Cu2+ на четырех культурах: Aspergillus niger, Phanerochaete chrysosporium, Saccharomycopsis lypolytica и Saccharomyces cerevisae. Лучше сорбционные свойства наблюдались у дрожжей S.cerevisiae и грибов Ph.chrysosporium. Было детально изучено влияние концентрации Cu2+ на сорбционные способности и рост этих штаммов. Было установлено, что прирост биомассы уменьшается с увеличением концентрации Cu2+. Ионы меди с концентрацией 50 мг/л оказывают слабое ингибирующее действие, а при концентрациях более 250 мг/л период адаптации клеток был больше, а их рост замедлялся.
Процесс сорбции Cu2+ у этих двух исследуемых штаммов оказался быстрым. До 75% Cu2+ было поглощено в течение первых 6 часов.
Были рассчитаны адсорбционные возможности двух сорбентов. Большей сорбционной емкостью обладает S.cerevisiae (3,5 мг/г), чем Ph.chrysosporium (2,5 мг/г).
Известен «Способ биологической очистки жидкостей от радионуклидов и тяжелых металлов и штамм гриба RHIZOPUS ARRHIIIRUS BKMF-592, используемый для получения биомассы, извлекающей радионуклиды и тяжелые металлы из жидкостей», включающий обработку жидкостей сорбентом в виде биомассы грибов вида Phizopus arrhirus, относящихся к штамму гриба RHIZOPUS ARRHIIIRUS BKMF-592.
Патент РФ на изобретение № 2024080, МПК: C02F 3/34, д. публ. 1994.11.30. Известен «Способ биосорбционной очистки сточных вод от ионов тяжелых металлов», предусматривающий подготовку питательной среды, культивирование микроорганизмов, внесение микроорганизмов в сточную воду, перемешивание, седиментацию, при этом питательная среда содержит крахмал, соевую муку, измельченное перо, сульфат цинка, сульфат железа, карбонат кальция, гидроортофосфат калия и воду при следующем соотношении компонентов, масс.%:
крахмал | 5,0 | соевую муку | 0,5 |
измельченное перо | 1,0 | сульфат цинка | 0,02 |
сульфат железа | 0,01 | карбонат кальция | 0,4 |
гидроортофосфат калия | 0,08 | вода | остальное |
Патент РФ на изобретение № 2312073, МПК: C02F 3/34, д. публ. 2007.12.10.
Недостатком этих способов является использование мутантных штаммов, которые требуют сложной технологии выращивания на дорогих питательных средах, сложной предварительной подготовки самой биомассы, корректировки сточных вод в процессе сорбции. Необходимая эффективность очистки воды достигалась лишь при низких концентрациях тяжелых металлов, не характерных для сточных вод гальванических цехов. Кроме того, перечисленные способы основаны не на сорбции тяжелых металлов, а на флокуляции.
Наиболее близким аналогом к способу в предложенном в качестве изобретения техническом решении является «Способ биосорбции тяжелых металлов из водных растворов», включающий подготовку питательной среды, культивирование микроорганизмов, внесение в питательную среду микроорганизмов воды с образованием водного раствора. При этом в качестве сорбента используют штаммы Aspergillus niger, Phanerochaete chrysosporium, Saccharomycopsis lypolytica и Saccharomyces cerevisae. Существенным недостатком этого способа является то, что сорбция тяжелых металлов осуществлялась не из сточной воды, а из питательной среды, содержащей большое количество углеводов (от 20 г/л) и других питательных веществ. В такой среде микробные клетки находятся в стадии экспоненциального (ускоренного) роста, что снижает их сорбционную способность и определяет невысокую эффективность извлечения ионов тяжелых металлов. [Mihova St., Godjevargova T. Biosorption of heavy metals from aqueous solutions, 2000, 4]
Техническим результатом способа является повышение эффективности очистки сточных вод от ионов тяжелых металлов путем использования биомассы живых остаточных дрожжей отходов пивоваренных производств, содержащих ассоциацию микроорганизмов в виде различных штаммов Saccharomyces cerevisiae, с жизнеспособностью 90-95. Кроме того способ позволяет добиться интенсификации процесса очистки и повысить его рентабельность.
Технический результат достигается тем, что «СПОСОБ БИОСОРБЦИОННОЙ ОЧИСТКИ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ С ПОМОЩЬЮ ДРОЖЖЕЙ «Saccharomyces cerevisiae» предусматривает внесение в сточную воду биомассы дрожжей в виде отходов пивоваренных производств. Отходы пивоваренных производств содержат ассоциацию дрожжей различных штаммов Saccharomyces cerevisiae с жизнеспособностью 90-95%, в количестве 10 г/дм3 сточной воды. Затем осуществляют перемешивание биомассы дрожжей со сточной водой с получением суспензии. Выдерживают полученную суспензию в течение 8 часов при температуре от 10°С до 29°С и pH раствора 5,5-8,0. Последовательно осуществляют дальнейшую утилизацию отработанных дрожжей, содержащих тяжелые металлы, путем обработки их известью Са(ОН)2, при соотношении биомасса дрожжей: известь, равном 1:5-8. с получением смеси. При этом утилизируемую смесь подвергают влажной обработке при температуре 90°С в течение одного часа, с последующим изоляцией полученной смеси, содержащей тяжелые металлы, в бетонной смеси.
Данный продукт после обработки известью может быть использован как белковый пластификатор для бетонных смесей, применяемых в строительстве.
Примеры конкретного выполнения способа.
В качестве биосорбента использовали три штамма пивоваренной дрожжевой культуры (Saccharomyces cerevisiae).
Дрожжи пивоваренные Saccharomyces cerevisiae штамм SC1;
Дрожжи пивоваренные Saccharomyces cerevisiae штамм SC2;
Дрожжи пивоваренные Saccharomyces cerevisiae штамм SC3;
Сухие дрожжи (продукт сушки SC1, SC2, SC3 штаммов).
Хитин-глюкановый комплекс, полученный из дрожжей (продукт переработки SC1, SC2, SC3).
Выбор этих культур дрожжей в качестве биосорбентов обоснован их физическими и биохимическими особенностями, влияющих на биосорбционнные возможности (Каравайко Г.И. 1989, 1996; Кульский Л.А. 1986). Основным достоинством выбранных культур дрожжей является то, что они используют широкий спектр механизмов детоксикации тяжелых металлов: образование специализированных белков (металлотионеин-подобные белки), низкомолекулярных пептидов (глутатион), фитохелатинов, образование внутриклеточных соединений, клеточная оболочка (имеющая в своем составе пептидогликан и хитин-глюкановый комплекс) (Han RP., 2000; Omar N.B., 1996; Simmons P., 1995; Karamushka I., 1996; Coblenz A., 1994; Ferreira A.M., 1993). В процессе детоксикации происходит связывание тяжелых металлов посредством биосорбции и биоаккумуляции с последующим образованием малотоксичных соединений.
Данный процесс сорбции тяжелых металлов обладает динамичностью за счет образования различных веществ, участвующих в метаболизме детоксикации. К числу таких веществ относятся глутатион, металлотионеины, фитохелатины и ряд промежуточных соединений. Эти вещества выступают как звенья одной цепи, приводящей к связыванию тяжелых металлов внутри клеток. Кроме того, ассоциативные отношения внутри биомассы дрожжей позволяют им выживать (выживаемость не менее 70%) при высоких концентрациях тяжелых металлов: цинка до 1600 мг/дм3, меди - до 300 мг/дм3, никеля - до 3600 мг/дм3. При этом дрожжи можно использовать без дополнительного выращивания на питательных средах для очистки сточных вод от тяжелых металлов. Выбранные культуры дрожжей легко культивируются.
Выбранные для исследований тяжелые металлы (цинк, никель и медь) являются основными загрязнителями в сточных водах гальванических цехов. Для оценки выживаемости дрожжевой культуры использовали количественный микроскопический метод дифференцированного окрашивания водным раствором метиленового синего в камере Горяева.
Значение эффективности сорбции биосорбентов на основе дрожжей рассчитывали по формуле:
где Е - значение эффективности;
Ck (мг/дм3) - конечная концентрация металла в среде по окончании эксперимента;
Cn (мг/дм3) - начальная концентрация металла в растворе до эксперимента.
Для оценки содержания тяжелых металлов в модельных растворах и сточных водах использовали метод атомно-абсорбционной спектроскопии.
Математико-статистическую обработку экспериментальных данных проводили методом малых выборок по Стьюденту. Вычисление значений среднего арифметического (x), среднего квадратичного отклонения ( ), коэффициента корреляции (r) рассчитывали по формуле:
где r - коэффициент корреляции;
x и y - средние выборочные значения сравниваемых величин;
xi и yi - частные выборочные значения сравниваемых величин;
n - общее число величин в сравниваемых рядах показателей;
и - дисперсии, отклонения сравниваемых величин от средних величин.
Каждый эксперимент проводился в 10-15-ти кратной повторности.
Математические расчеты и построение графиков осуществляли на персональном компьютере с помощью лицензионных программных пакетов MS Excel 2003 и Minitab 14.0.
Эффективность очистки воды от тяжелых металлов заявленным способом поясняется примерами, сведенными в таблицы.
Пример 1.
Наименование металлов | Количество, мг/дм3 | Содержание биомассы дрожжей, г/дм3 | Эффективность очистки сорбции, % |
Цинк | 20,0 | 10,0 | 98,1 |
Никель | 100,0 | 10,0 | 75,5 |
Медь | 40,0 | 10,0 | 75,0 |
Пример 2.
Наименование металлов | Количество, мг/дм3 | Содержание биомассы дрожжей, г/дм 3 | Эффективность сорбции, % | |
pH 5,5 | pH 8,0 | |||
Цинк | 20,0 | 10,0 | 98,3 | 86,8 |
Никель | 100,0 | 10,0 | 84,9 | 75,5 |
Медь | 40,0 | 10,0 | 78,3 | 80,0 |
Пример 3.
Наименование металлов | Количество, мг/дм3 | Содержание биомассы дрожжей, г/дм 3 | Эффективность сорбции, % | ||
10°С | 20°С | 29°С | |||
Цинк | 20,0 | 10,0 | 97,7 | 96,1 | 96,2 |
Никель | 100,0 | 10,0 | 71,7 | 75,5 | 77,4 |
Медь | 40,0 | 10,0 | 70,0 | 73,3 | 76,7 |
Наибольшие значения эффективности сорбции (от 88,7% до 99,6%) тяжелых металлов из сточных вод наблюдаются в течение 24 часов при pH от 5 до 8 и содержании биомассы ассоциации дрожжевых культур Saccharomyces cerevisiae 10 г/дм3.
Применение данного изобретения позволит повысить эффективность очистки сточных вод от ионов тяжелых металлов, кроме того, добиться интенсификации процесса очистки и повысить его рентабельность.
Класс C02F3/34 отличающаяся используемыми микроорганизмами
Класс C02F103/16 от металлургических процессов, те от производства, очистки или обработки металлов, например гальванические стоки
Класс C12Q1/02 использующие жизнеспособные микроорганизмы
Класс C12R1/865 Saccharomyces cerevisiae