пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием

Классы МПК:B01D71/02 неорганический материал
B01D67/00 Способы, специально предназначенные для изготовления полупроницаемых мембран для процессов разделения, или устройства для этих целей
B01J23/75 кобальт
B01J23/755 никель
C01B3/38 с использованием катализаторов
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) (RU)
Приоритеты:
подача заявки:
2012-05-04
публикация патента:

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы. Пористая каталитическая мембрана представляет собой продукт вибропрессования высокодисперсной смеси, содержащей никель и кобальт, взятых в соотношении 1:1, термообработанный в муфельной печи до температуры самовоспламенения, выдержанный, а затем охлажденный. Также предложен способ переработки отходящих продуктов процесса Фишера-Тропша, который включает переработку газообразных продуктов - метана, углекислого газа и растворенных в воде примесей органических веществ (метанол, этанол, метилэтилкетон, уксусную кислоту и ацетон) путем углекислотно-паровой конверсии в присутствии указанного каталитического модуля и осуществляемой при температуре 680-780°C, давлении 1-1,5 атм и скорости подачи исходной парогазовой смеси совместно с парами воды, выделяемой в процессе, 16000-96000 ч-1 с получением продуктов конверсии - синтез-газа и воды, очищенной от примесей органических веществ. Технический результат - эффективная переработка отходящих продуктов в синтез-газ, что позволяет увеличить выход ценных углеводородов; и очистка больших количеств воды, выделяемой в процессе. 2 н. и 2 з.п. ф-лы, 1 ил., 4 табл., 9 пр.

пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119

Формула изобретения

1. Пористый керамический каталитический модуль для переработки отходящих продуктов процесса Фишера-Тропша, представляющий собой продукт вибропрессования высокодисперсной смеси, содержащий никель и кобальт, взятые в соотношении 1:1, термообработанный в муфельной печи до температуры самовоспламенения, выдержанный, а затем охлажденный.

2. Модуль по п.1, отличающийся тем, что на внутреннюю поверхность его каналов наносят буферный слой оксида титана, а затем каталитически активный компонент, включающий Pd в количестве 0,066 мас.% по отношению к массе модуля.

3. Способ переработки отходящих продуктов процесса Фишера-Тропша, характеризующийся тем, что он включает переработку газообразных продуктов - метана, углекислого газа и растворенных в воде примесей органических веществ путем углекислотно-паровой конверсии в присутствии каталитического модуля по п.1, и осуществляемой при температуре 680-780°C, давлении 1-1,5 атм и скорости подачи исходной парогазовой смеси совместно с парами воды, выделяемой в процессе, 16000-96000 ч -1 с получением продуктов конверсии - синтез-газа и воды, очищенной от примесей органических веществ.

4. Способ переработки отходящих продуктов процесса Фишера-Тропша по п.3, отличающийся тем, что в качестве примесей органических веществ вода содержит метанол, этанол, метилэтилкетон, уксусную кислоту и ацетон.

Описание изобретения к патенту

Предлагаемое изобретение относится к способу переработки углеводородов и других органических веществ в водородсодержащий газ, а именно к способу регенерации отходящих продуктов (метана, углекислого газа и растворенных в воде органических примесей) процесса Фишера-Тропша обратно в синтез-газ углекислотно-паровой конверсией в присутствии мембранно-каталитических систем.

В настоящее время одной из проблем внедрения процесса Фишера-Тропша в промышленности является накопление большого количества воды, стехиометрически образующейся в результате реакции (1), которая содержит растворенные в ней вредные для окружающей среды примеси органических веществ - спиртов, карбоновых кислот, кетонов.

Основная рекция процесса Фишера-Тропша:

Соотношение парафины:вода=1:1 (масс). Также образуется некоторое количество метана и углекислого газа. Соотношение CH4:H2 O:CO2=1:2,5:10 моль/моль. Поэтому было бы целесообразно перерабатывать образующиеся отходящие продукты обратно в синтез-газ.

Одним из перспективных и новых подходов к решению вопросов переработки отходящих продуктов можно рассматривать процессы, базирующиеся на пористых каталитических мембранах, представляющих собой ансамбль микрореакторов.

Задача изобретения заключается в создании каталитических систем на базе пористых мембран, которые будут активны в способе регенерации побочных продуктов синтеза Фишера-Тропша путем углекислотно-паровой конверсии с использованием воды, выделяемой непосредственно в процессе превращения отходящих продуктов процесса Фишера-Тропша в синтез-газ.

Для решения поставленной задачи предложен пористый керамический каталитический модуль для переработки отходящих продуктов процесса Фишера-Тропша, представляющий собой продукт вибропрессования высокодисперсной смеси никеля и кобальта, взятых в соотношении 1:1, термообработанный в муфельной печи до температуры самовоспламенения, выдержанный, а затем охлажденный.

Для увеличения активности каталитической системы в процессе переработки органических продуктов пористый керамический каталитический модуль может дополнительно содержать во внутреннем объеме каналов буферный слой оксида титана и активный компонент, например палладий в количестве 0,066% масс., по отношению к массе модуля.

Также для решения поставленной задачи предложен способ переработки отходящих продуктов процесса Фишера-Тропша, характеризующийся тем, что он включает переработку газообразных продуктов - метана, углекислого газа и растворенных в воде примесей органических веществ путем углекислотно-паровой конверсии в присутствии каталитического модуля по п.1 и осуществляемой при температуре 680-780°C, давлении 1-1,5 атм и скорости подачи исходной парогазовой смеси совместно с парами воды, выделяемой в процессе 16000-96000 ч -1 с получением продуктов конверсии - синтез-газа и воды, очищенной от примесей органических веществ. Выбор повышенной температуры процесса мотивирован тем, что при данной температуре метан, как наиболее устойчивое соединение, содержащееся в исходной смеси, практически полностью перерабатывается.

В предложенном способе переработке подвергают отходящие продукты процесса Фишера-Тропша, содержащие в качестве примесей органических веществ метанол, этанол, метилэтилкетон, уксусную кислоту и ацетон, растворенные в воде без дополнительной ее очистки.

Технический результат, который может быть получен от использования предлагаемого технического решения заключается:

- в достижении практически полной конверсии побочных продуктов процесса Фишера-Тропша;

- в возможности осуществлять переработку продуктов процесса Фишера-Тропша при более высокой объемной скорости и добиться более высокой производительности по выходу синтез-газа (на 20-30%);

- в решении важной экологической задачи по очистке больших количеств выделяемой в процессе Фишера-Тропша воды, содержащей органические примеси.

Нижеследующие примеры иллюстрируют настоящее изобретение, но никоим образом не ограничивают его область.

Для получения образца № 1 пористого керамического каталитического модуля берут порошки никеля и кобальта, взятые в соотношении 1:1(никеля -50% масс. и кобальта - 50% масс.) и помещают в барабан. Перемешивают в течение одного часа. Затем полученную высокодисперсную смесь загружают в графитовую пресс-форму, помещают в вакуумную печь и подвергают вибропрессованию в режиме теплового взрыва (в объеме образца), т.е. исходную шихту доводят до температуры самовоспламенения внешним нагревом, после чего происходит самопроизвольное горение шихты по всему объему. Осуществляют выдержку в течение 10 мин и охлаждение.

Образец номер № 2 пористого керамического каталитического модуля готовят сначала аналогичным образом. А затем формируют во внутреннем объеме каналов мембран каталитический слой металлооксидов с использованием золь-гель метода на основе органических растворов металлокомплексных предшественников в толуоле, взятых в заданных количествах, для получения оксидов заданного состава с добавкой агентов, стабилизирующих маточные растворы. Перед формированием каталитического покрытия сложного металлооксида на внутренние стенки каналов микропор мембраны наносят буферный слой оксида титана со структурой анатаза с целью увеличения их удельной поверхности и уменьшения объема пор. Для этого готовят коллоидный раствор на основе н-бутилата титана следующим образом: н-бутилат титана в атмосфере аргона разбавляют абсолютированным толуолом в объемном соотношении 1:1 и тщательно перемешивают на магнитной мешалке при комнатной температуре. Полученный золь стабилизируют ацетилацетоном, добавляя последний к золю бутилата титана в молярном соотношении Ti(OC4 H9):AcAcH=1:1. Стабилизированный золь алкоголята титана наносят на внутреннюю поверхность мембранного модуля, контролируя количество нанесения по весу. После нанесения мембранный модуль подвергают термоудару в муфельной печи при температуре 500°C в течение 20 минут для удаления органических фрагментов. Количество нанесенного оксида титана контролируют по привесу мембраны после нанесения. По окончании нанесения оксида титана мембрану прокаливают в муфельной печи при температуре 500°C в течение 5 часов. Количество нанесенного буферного слоя соответствует - 3-4% масс. относительно мембранного модуля.

После нанесения буферного слоя оксида титана на внутренней поверхности микроканалов проводят формирование металлооксидного каталитического покрытия, содержащего 0,066% масс. Pd по отношению к массе модуля.

Для этого коллоидный раствор, содержащий предшественники металлооксидной каталитической системы (ацетат палладия) смешивают с приготовленным раствором алкоксида титана и наносят на слой сформированного ранее оксида титана, распределенного на внутренней поверхности каналов мембраны. После нанесения 0,066% Pd мембранно-каталитическую систему в атмосфере Ar, прокаливают при температуре 500°C в течение 5 часов.

Образец № 3 пористого керамического каталитического модуля получают как образец № 1, но берут порошки, никеля и алюминия, взятые в соотношении 4:1(никеля - 80% масс. и алюминия - 20% масс.). Далее формируют во внутреннем объеме каналов модуля каталитический слой металлооксидов как описано при получении образца № 2.

На фиг.1 представлена схема мембранно-каталитической установки, с помощью которой проводят переработку отходящих газов в условиях углекислотно-паровой конверсии, где

1 - баллон с реакционной смесью; 2 - редуктор; 3 - регулятор расхода газа; 4 - печь предварительного нагрева; 5 - манометр; 6, 7 - термопары; 8 - мембранно-каталитический реактор; 9 - сборник жидкости; 10 - запорный вентиль; 11 - CO/CO2 - анализатор; 12 - хроматограф; 13 - АЦП; 14 - ПК; 15 - жидкостной дозатор.

Углекислотно-паровую конверсию отходящих продуктов процесса Фишера-Тропша (метана, углекислого газа и растворенных в воде примесей органических веществ) проводят в фильтрационном режиме на мембранно-каталитических системах: Ni-Co (50% масс. - 50% масс.) (образец 1), Ni-Co (50% масс. - 50% масс.) с нанесенным катализатором Pd (0,066% масс.) (образец 2) и Ni-Al (80% масс. - 20% масс.) с нанесенным катализатором Pd (0,066% масс.) (образец 3) - при температуре 780°C и объемной скорости подачи смеси 16000-96000 ч-1.

Состав исходной смеси СН4:H2O:CO2=1:2,5:10 моль/моль.

Из жидкостного дозатора подают воду с растворенными в ней примесями органических веществ, которая смешивается с газовым потоком (метана и углекислого газа) и попадает на внешнюю сторону мембраны.

Концентрации растворенных в воде органических примесей, идентифицированные методом хромато-масс-спектрометрии, представлены в таблице 1.

Табл.1.
Содержание органических примесей в воде
КомпонентМетанол ЭтанолАцетонУксусная кислотаМетил-этил-кетон БутанолПентанол
Концентрация, %масс.2,8 18,21,35,0 4,01,3 0,4

Образование синтез-газа происходит по реакциям 2 и 3.

Реакция углекислотно-паровой конверсии метана в синтез-газ:

пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119

Реакция углекислотно-паровой конверсии органических веществ, содержащихся в воде:

пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119

Примеры 1-9.

Результаты экспериментов на мембранно-каталитической системе, (образец 1) представлены в примерах 1-3 (мембрана Ni-Co, 50% масс.-50% масс.), результаты экспериментов на мембранно-каталитической системе (образец 2) - в примерах 4-6 (мембрана Ni-Co, 50% масс.-50% масс., с катализатором, содержащим Pd в количестве 0,066% масс. от массы модуля), результаты экспериментов на мембранно-каталитической системе (образец 3) - в примерах 7-9 (мембрана Ni-Al, 80% масс.-20% масс., с катализатором, содержащим Pd в количестве 0,066% масс. от массы модуля).

Таблица 2.
Углекислотно-паровая конверсия отходящих продуктов процесса Фишера-Тропша при 780°C
№ № примеровQ, ч-1 (н.у.) XCH4, % пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 H2, л/(ч·дм3пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 мембр.)пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 CO, л/(ч·дм3пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 мембр.)пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 синтез-газ, л/(ч·дм3пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 мембр.)H2 /CO
1 16000993100 39007000 0,8
2 32000966100 690013000 0,9
3 640008511800 1120023000 1,1
4 32000996400 700013400 0,9
5 640009814000 1250026500 1,1
6 960009221500 1750039000 1,2
7 640030500 8001300 0,6
8 960020750 9501700 0,8
9 16000101100 14002500 0,8
Q - скорость подачи отходящих продуктов Фишера-Тропша; XCH4 - конверсия по метану; пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 H2 - производительность по водороду; пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 CO - производительность по CO; пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 синтез-газ - производительность по синтез-газу.

Исходя из таблицы 2, при использовании образца 1 при объемной скорости подачи 16000 ч-1, конверсия метана 99% достигается и с ростом скорости подачи снижается до 85%, при этом растет удельная производительность мембраны по синтез-газу. При использовании образца 2 конверсия метана 98-99% достигается при объемной скорости подачи 64000 ч-1 и с ростом скорости подачи снижается до 92%, при этом растет удельная производительность мембраны по синтез-газу. При использовании состава, включающего никель и алюминий (образец 3), достигается довольно низкая конверсия метана до 30% даже при невысоких скоростях подачи.

Таблица 3.
Состав газовой смеси на выходе
№ № примеровQ, ч-1 (н.у.) СН2, %об. CCO, %об.CCH4, %об.CCO2, %об.
116000 17,822,70,1 59,4
2 3200018,6 21,10,356,0
364000 19,018,0 1,062,0
43200019,5 21,40,1 59,0
5 6400021,018,8 0,160,1
696000 21,217,30,5 61,0
7 64008,2 13,75,472,7
89600 8,210,7 6,274,9
9160007,3 9,36,8 76,6
C - концентрация водорода, CO, метана и CO2 соответственно.

Из таблицы 3 видно, что остаточная концентрация метана может составлять 0,1% и с ростом скорости подачи парогазовой смеси достигает 0,5-1%. При использовании состава, включающего никель и алюминий (образец 3), в газовой смеси на выходе остается большое количество метана 5-7%. Анализ состава газовой смеси проводился методом газовой хроматографии.

Таблица 4.
Содержание органических примесей в воде
КомпонентQ, ч-1 (н.у.) МетанолЭтанол АцетонУксусная кислота Метил -этил-кетонБутанол Пентанол
Концентрация, % масс.16000 00,0010 000 0
32000 0,0010,0010 00 00
64000 0,0010,002 000 00
пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 320000 00 000 0
пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 640000 0,0010 000 0
пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 960000 0,0010 000 0
пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 64000,001 0,0020 000 0
пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 96000,002 0,0100 000 0
пористый керамический каталитический модуль и способ переработки   отходящих продуктов процесса фишера-тропша с его использованием, патент № 2506119 160000,006 0,0200 000 0

По данным таблицы 4, остаточное содержание метанола и этанола в воде не превышает 0,001% масс., а остальные органические примеси полностью отсутствуют. При использовании состава, включающего никель и алюминий (образец 3), остаточное содержание этанола в воде не превышает 0,001-0,002% масс. только при скорости подачи 6400 ч-1, а остальные органические примеси также полностью отсутствуют.

Таким образом, практически полная конверсия побочных продуктов процесса Фишера-Тропша достигается на мембранно-каталитической системе, изготовленной на основе Ni-Co; модификация этой мембраны небольшим количеством палладия позволяет осуществлять переработку продуктов процесса Фишера-Тропша при более высокой объемной скорости и добиться более высокой производительности по выходу синтез-газа. Использование предлагаемого способа позволяет достигнуть положительного эффекта по двум факторам: 1 - переработка отходящих газообразных продуктов в синтез-газ на 20-30% позволяет увеличить выход ценных углеводородов, что приведет к существенному повышению экономического эффекта процесса в целом; 2 - решается важная экологическая задача по очистке больших количеств выделяемой в процессе воды, которую после очистки можно использовать для технических целей.

Класс B01D71/02 неорганический материал

композиционная ионообменная мембрана -  патент 2527236 (27.08.2014)
способ изготовления мембраны для выделения водорода из газовых смесей -  патент 2521382 (27.06.2014)
мембранный фильтрующий элемент для очистки агрессивных жидкостей -  патент 2519076 (10.06.2014)
твердооксидный композитный материал для мембран электрохимических устройств -  патент 2510385 (27.03.2014)
способ получения пористых, пленочных материалов на основе карбоксиметилцеллюлозы -  патент 2509784 (20.03.2014)
твердый электролит на основе оксида церия и церата бария -  патент 2495854 (20.10.2013)
молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей -  патент 2492914 (20.09.2013)
композиционный материал для фильтрационной очистки жидкости -  патент 2465951 (10.11.2012)
способ окислительного дегидрирования метанола -  патент 2443464 (27.02.2012)
композитные материалы из керамических полых волокон, способы их получения и их применение -  патент 2427556 (27.08.2011)

Класс B01D67/00 Способы, специально предназначенные для изготовления полупроницаемых мембран для процессов разделения, или устройства для этих целей

способ изготовления полимерной ионообменной мембраны радиационно-химическим методом -  патент 2523464 (20.07.2014)
микроперфорированная полимерная пленка и способы ее изготовления и применения -  патент 2522441 (10.07.2014)
способ изготовления мембраны для выделения водорода из газовых смесей -  патент 2521382 (27.06.2014)
способ изготовления трековой мембраны для фильтрации крови -  патент 2519184 (10.06.2014)
способ обработки полимерных полупроницаемых мембран -  патент 2516645 (20.05.2014)
способ прогнозирования преимущественно проникающего через первапорационную мембрану компонента разделяемой смеси с помощью метода обращенной газовой хроматографии -  патент 2511371 (10.04.2014)
смесь для формования ацетатцеллюлозной ультрафильтрационной мембраны -  патент 2510885 (10.04.2014)
устройство для получения диффузионных полимерных мембран -  патент 2504429 (20.01.2014)
способ получения диффузионных фуллеренолсодержащих мембран -  патент 2501597 (20.12.2013)
тонкие первапорационные мембраны -  патент 2492918 (20.09.2013)

Класс B01J23/75 кобальт

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ оптимизации функционирования установки для синтеза углеводородов из синтез-газа путем контроля парциального давления со -  патент 2525291 (10.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды -  патент 2522324 (10.07.2014)
способы гидрокрекинга с получением гидроизомеризованного продукта для базовых смазочных масел -  патент 2519547 (10.06.2014)
катализаторы -  патент 2517700 (27.05.2014)

Класс B01J23/755 никель

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способы гидрокрекинга с получением гидроизомеризованного продукта для базовых смазочных масел -  патент 2519547 (10.06.2014)
катализаторы -  патент 2517700 (27.05.2014)
лакунарный гетерополианион структуры кеггина на основе вольфрама для гидрокрекинга -  патент 2509729 (20.03.2014)
катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления -  патент 2497585 (10.11.2013)
состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья -  патент 2492922 (20.09.2013)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)

Класс C01B3/38 с использованием катализаторов

способ конверсии метана -  патент 2525124 (10.08.2014)
способ повышения качества природного газа с высоким содержанием сероводорода -  патент 2522443 (10.07.2014)
способ получения водорода и водород-метановой смеси -  патент 2520482 (27.06.2014)
способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах -  патент 2520475 (27.06.2014)
способ конверсии метана -  патент 2517505 (27.05.2014)
системы и способы производства сверхчистого водорода при высоком давлении -  патент 2516527 (20.05.2014)
способ получения водорода -  патент 2515477 (10.05.2014)
способ конверсии дизельного топлива и конвертор для его осуществления -  патент 2515326 (10.05.2014)
способ получения синтез-газа для производства аммиака -  патент 2510883 (10.04.2014)
способ совместного получения синтетических жидких углеводородов и метанола и установка для его осуществления, интегрированная в объекты промысловой подготовки нефтяных и газоконденсатных месторождений -  патент 2505475 (27.01.2014)
Наверх