высокопрочная хладостойкая свариваемая сталь

Классы МПК:C22C38/58 с более 1,5 % марганца по массе
C22C38/54 с бором
Автор(ы):, , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Северсталь-Проект" (ООО "Северсталь-Проект") (RU)
Приоритеты:
подача заявки:
2012-03-06
публикация патента:

Изобретение относится к области металлургии, а именно к конструкционным высокопрочным сталям повышенной износостойкости, используемым при производстве сварных кузовов большегрузных автомобилей, работающих в условиях Крайнего Севера. Сталь содержит, мас.%: углерод 0,16-0,19, кремний 0,17-0,37, марганец 1,45-1,60, ванадий 0,12-0,15, хром 0,85-1,0, никель 1,15 - 1,30, кальций от более 0,010 до 0,015, молибден 0,27-0,35, медь 0,20-0,30, титан 0,010-0,025, ниобий 0,04-0,06, алюминий 0,03-0,05, бор от более 0,0030 до 0,0035, азот не более 0,010, фосфор не более 0,012, сера не более 0,005, железо остальное. Сталь обладает повышенной ударной вязкостью при отрицательных температурах, характеризуется прочностью и стабильностью механических свойств при сохранении износостойкости. 2 табл., 1 пр.

Формула изобретения

Высокопрочная хладостойкая свариваемая сталь, содержащая углерод, марганец, кремний, бор, азот, алюминий, хром, никель, молибден, ванадий, кальций, медь, титан, ниобий, серу, фосфор и железо, отличающаяся тем, что она содержит указанные элементы при следующем соотношении, мас.%:

углерод0,16-0,19
марганец1,45-1,60
кремний0,17-0,37
борот более 0,0030 до 0,0035
азот не более 0,010
алюминий 0,03-0,05
хром 0,85-1,0
никель 1,15-1,30
молибден 0,27-0,35
ванадий 0,12-0,15
кальций от более 0,010 до 0,015
медь 0,20-0,30
титан 0,010-0,025
ниобий 0,04-0,06
сера не более 0,005
фосфорне более 0,012
железоостальное

Описание изобретения к патенту

Изобретение относится к металлургии, в частности к конструкционным сталям повышенной износостойкости, используемым при производстве сварного кузова большегрузного автомобиля для работы в условиях Крайнего Севера.

Для изготовления кузовов большегрузных самосвалов, работающих при температурах до -40°C, используют горячекатаные листы толщиной 9-25 мм из свариваемой хладостойкой низколегированной стали. Горячекатаные стальные листы должны сочетать высокую прочность и износостойкость.

Известна низколегированная сталь, имеющая следующий химический состав, мас.%:

Углерод0,12-0,18
Марганец1,2-1,5
Кремний0,5-0,8
Титан0,01-0,03
Медь0,03-0,30
Алюминий0,02-0,05
Хром0,5-1,0
Никель0,5-0,8
Молибден0,2-0,6
Ванадий0,1-0,2
Сера0,003-0,015
Кальций0,006-0,03
Фосфор0,003-0,02
ЖелезоОстальное (RU 2075534, МПК С22С 38/50, публ. 20.03.1997 г.).

Недостатки стали известного состава состоят в том, что она имеет низкие прочностные свойства, недостаточные ударную вязкость при температуре -40°С и износостойкость.

Известна низколегированная свариваемая сталь следующего состава, мас.%:

Углерод0,16-0,20
Марганец1,2-1,5
Кремний0,17-0,37
Бор0,001-0,005
Азот0,003-0,015
Алюминий0,02-0,05
Хром0,5-1,0
Никель0,5-2,2
Молибден0,2-0,35
Ванадий0,07-0,15
Серане более 0,015
Кальций 0,003-0,015
Фосфор не более 0,020
Железо Остальное (RU 2223343, МПК С22С 38/54, С22С 38/58, публ. 10.02.2004 г.)

Недостатки стали известного состава состоят в том, что она имеет недостаточные ударную вязкость при температуре -40°C и прочность.

Наиболее близкой по своему составу и свойствам к предлагаемой стали является сталь, содержащая, мас.%:

Углерод0,02-0,25
Марганец0,50-2,0
Кремний0,01-0,8
Бор0,0030 или менее
Азот 0,0005-0,008
Алюминий 0,005-0,1
Хром 2,0 или менее
Никель 4,0 или менее
Молибден 1,0 или менее
Ванадий 0,5 или менее
Кальций 0,01 или менее
Медь 2,0 или менее
Титан 0,1 или менее
Ниобий 0,1 или менее
Сера 0,004 или менее
Фосфор 0,02 или менее
Железо Остальное (RU 2442839 С2, С22С 38/06, публ. 20.02.2012 г.).

Недостатком стали известного состава является то, что она имеет недостаточные ударную вязкость при температуре -40°C и прочность.

Техническая задача, решаемая изобретением, состоит в повышении ударной вязкости при отрицательных температурах и прочности.

Для решения поставленной технической задачи предложена сталь, содержащая углерод, марганец, кремний, бор, азот, алюминий, хром, никель, молибден, ванадий, кальций, медь, титан, ниобий, серу, фосфор и железо при следующем соотношении компонентов, мас.%:

Углерод0,16-0,19
Марганец1,45-1,60
Кремний0,17-0,37
БорОт более 0,0030 до 0,0035
Азот Не более 0,010
Алюминий 0,03-0,05
Хром 0,85-1,0
Никель 1,15-1,30
Молибден 0,27-0,35
Ванадий 0,12-0,15
Кальций От более 0,010 до 0,015
Медь 0,20-0,30
Титан 0,010-0,025
Ниобий 0,04-0,06
Сера Не более 0,005
ФосфорНе более 0,012
ЖелезоОстальное

Сущность предлагаемого изобретения состоит в том, что при содержании элементов в стали в предложенном соотношении позволяет измельчить ее структуру. В результате возрастает прочность и ударная вязкость стали при -40°C.

Углерод упрочняет сталь. При содержании углерода менее 0,16% не достигается требуемая прочность стали, а при его содержании более 0,19% ухудшается свариваемость стали.

Кремний раскисляет сталь, повышает ее сопротивляемость истиранию. При концентрации кремния менее 0,17% прочность стали ниже допустимой, а при концентрации более 0,37% снижается пластичность.

Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 1,45% прочность и износостойкость стали недостаточны.

Ванадий в сочетании с алюминием являются сильными карбидообразующими элементами. При содержании ванадия менее 0,12% снижаются прочность и пластичность стали. Увеличение содержания ванадия более 0,15% нецелесообразно, т.к. не ведет к дальнейшему улучшению свойств, а лишь увеличивает расход легирующих.

Хром повышает прочность и износостойкость стали. При его концентрации менее 0,85% прочность и износостойкость ниже допустимых значений. Увеличение содержания хрома более 1,00% приводит к потере пластичности из-за роста карбидов хрома.

При содержании никеля менее 1,15% снижается прочность и износостойкость стали.

Молибден повышает прочность и вязкость стали, измельчая зерно микроструктуры. При содержании молибдена менее 0,27% прочность стали ниже требуемого уровня, а увеличение его содержания более 0,35% ухудшает пластичность и приводит к перерасходу легирующих элементов.

При содержании кальция менее 0,01% не происходит достаточной модификации данной стали, а при его содержании более 0,015% он образует крупные неметаллические включения, что снижает ударную вязкость при -40°C.

Ниобий и титан способствуют получению ячеистой дислокационной микроструктуры стали, обеспечивающей сочетание высоких прочностных свойств металла и высокой ударной вязкости при пониженных температурах.

Титан повышает прочность и ударную вязкость стали, измельчая зерно микроструктуры. При содержании титана менее 0,010% прочность стали ниже требуемого уровня, а увеличение его содержания более 0,025% приводит к перерасходу легирующих элементов.

Ниобий повышает прочность и ударную вязкость стали, измельчая зерно микроструктуры. При содержании ниобия менее 0,04% прочность и ударная вязкость стали ниже требуемого уровня, а увеличение содержания ниобия более 0,06% нецелесообразно, т.к. не ведет к дальнейшему улучшению свойств, а лишь увеличивает расход легирующих элементов.

Медь способствует повышению прочностных свойств. Но если содержание этого элемента для данного состава превышает 0,30%, то может иметь место снижение ударной вязкости стали при отрицательных температурах.

Алюминий раскисляет сталь и измельчает зерно. Карбонитриды алюминия являются мелкодисперсными упрочняющими частицами. При содержании алюминия менее 0,03% снижается прочность стали. Увеличение содержания этого элемента более 0,05% приводит к снижению пластических и вязкостных свойств.

Бор упрочняет твердый раствор по механизму внедрения, повышает прочность и износостойкость стали, измельчает микроструктуру. При содержании бора менее 0,003% его влияние незначительно. Увеличение содержания бора более 0,0035% приводит к появлению по границам зерен избыточных фаз (боридов), что снижает ударную вязкость стали при отрицательных температурах.

Азот в стали является карбонитридообразующим элементом, обеспечивающим ее упрочнение. Содержание азота более 0,015% приводит к снижению вязкостных и пластических свойств, что недопустимо.

Фосфор и сера в стали являются вредными примесями, их концентрация должна быть как можно меньшей. Однако при концентрации фосфора не более 0,012% и серы не более 0,005% их отрицательное влияние незначительно.

Пример реализации

Сталь выплавляли в электродуговой печи, разливали в слябы. Слябы подвергали термической обработке при следующих технологических параметрах: скорость нагрева металла - 20-30°C/час; температура нагрева - 870°C; продолжительность выдержки 12 час; скорость охлаждения до температуры 200°C - не более 50°C/час. Затем слябы нагревали до температуры 1200-1260°C и прокатывали на толстолистовом стане 2800 в листы до конечной толщины (9,0-25,0 мм) при температуре конца прокатки 830-860°C. Для листов в толщинах 14,1-25,0 мм производили закалку с температуры 920°C. Затем прокат всех толщин подвергали отпуску при температуре нагрева 600-610°C и времени выдержки 1,5-1,9 мин/мм.

Из табл.1 и 2 следует, что предложенная сталь (составы 2-3) имеет более высокие прочность и ударную вязкость при температуре -40°С. Кроме того сталь характеризуется высокой износостойкостью и свариваемостью.

При запредельных концентрациях элементов (составы 1, 5-9) прочность и ударная вязкость стали ухудшаются, снижается износостойкость. Также более низкие свойства по прочности и ударной вязкости имеет сталь по прототипу (состав 4).

Таблица 1
Химический состав сталей
№ составаСодержание химических элементов, мас.%
C SiMn VCrNi MoСаAl BCuTi NbNP SFe
1 0,150,16 1,10,060,4 0,40,19 0,0020,010,0019 --- -0,0020,010 0,012Остальн.
20,17 0,331,5 0,140,91,2 0,340,011 0,040,00320,3 0,0200,05 0,0100,0100,003 Остальн.
3 0,180,36 1,60,151,0 1,30,36 0,0120,040,0033 0,30,020 0,060,0100,008 0,002Остальн.
40,16 0,271,35 0,050,50,24 0,520,003 0,030,00150,26 0,0130,02 0,0040,0020,001 Остальн.
5 0,170,36 1,30,090,8 0,60,22 0,0050,030,0009 -- -0,0060,013 0,011Остальн.
60,19 0,181,2 0,100,90,7 0,240,011 0,040,006- --- 0,0140,0150,014 Остальн.
7 0,200,32 1,40,130,7 2,10,31 0,0070,050,001 -- -0,0020,019 0,011Остальн.
80,16 0,181,4 0,060,80,5 0,230,014 0,020,002-- -- 0,0160,010,009 Остальн.
9 0,151,3 1,30,150,7 0,60,40 0,0180,04- 0,150,02 --0,012 0,009Остальн.

Таблица 2
Свойства листов из низколегированных сталей
высокопрочная хладостойкая свариваемая сталь, патент № 2495149 высокопрочная хладостойкая свариваемая сталь, патент № 2495149 высокопрочная хладостойкая свариваемая сталь, патент № 2495149 высокопрочная хладостойкая свариваемая сталь, патент № 2495149
высокопрочная хладостойкая свариваемая сталь, патент № 2495149 высокопрочная хладостойкая свариваемая сталь, патент № 2495149 высокопрочная хладостойкая свариваемая сталь, патент № 2495149 высокопрочная хладостойкая свариваемая сталь, патент № 2495149
№ состававысокопрочная хладостойкая свариваемая сталь, патент № 2495149 т, Н/мм2высокопрочная хладостойкая свариваемая сталь, патент № 2495149 в, Н/мм2KCV-40, Дж/см 2
1 70086023
21150 128060
31180 130065
411531203 -
5 900100041
6980 109043
7850 98039
89901090 40
9 79094047

Класс C22C38/58 с более 1,5 % марганца по массе

термостойкая аустенитная сталь, обладающая стойкостью к растрескиванию при снятии напряжений -  патент 2528606 (20.09.2014)
трубная сталь -  патент 2525874 (20.08.2014)
холоднодеформируемая сталь повышенной прочности и состоящее из нее плоское изделие -  патент 2524027 (27.07.2014)
листовая конструкционная нержавеющая сталь, обладающая превосходной коррозионной устойчивостью в сварном шве, и способ ее производства -  патент 2522065 (10.07.2014)
коррозионностойкая высокопрочная сталь -  патент 2519337 (10.06.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
малоактивируемая жаропрочная радиационностойкая сталь -  патент 2515716 (20.05.2014)
сталь -  патент 2514901 (10.05.2014)
высокопрочная среднеуглеродистая комплекснолегированная сталь -  патент 2510424 (27.03.2014)
высокопрочная гальванизированная листовая сталь и способ ее изготовления -  патент 2510423 (27.03.2014)

Класс C22C38/54 с бором

термостойкая аустенитная сталь, обладающая стойкостью к растрескиванию при снятии напряжений -  патент 2528606 (20.09.2014)
жаропрочная сталь мартенситного класса -  патент 2524465 (27.07.2014)
коррозионно-стойкая легированная нейтронно-поглощающая сталь для изготовления шестигранных чехловых труб для уплотненного хранения в бассейнах выдержки и транспортировки ядерного топлива -  патент 2519064 (10.06.2014)
малоактивируемая жаропрочная радиационностойкая сталь -  патент 2515716 (20.05.2014)
сталь арматурная термомеханически упрочненная для железобетонных конструкций -  патент 2506339 (10.02.2014)
сталь -  патент 2502822 (27.12.2013)
коррозионно-стойкая аустенитная сталь -  патент 2499075 (20.11.2013)
закаленная мартенситная сталь с низким содержанием кобальта, способ получения детали из этой стали и деталь, полученная этим способом -  патент 2497974 (10.11.2013)
высокотвердые, с высокой ударной вязкостью сплавы на основе железа и способы их изготовления -  патент 2481417 (10.05.2013)
высокоуглеродистая сталь для производства подката для получения холоднодеформированного арматурного периодического профиля для железобетонных изделий -  патент 2479665 (20.04.2013)
Наверх