способ получения корундовой керамики

Классы МПК:C04B35/111 тонкая керамика
Автор(ы):,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)
Приоритеты:
подача заявки:
2012-04-11
публикация патента:

Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики с повышенными статическими нагрузками. Технический результат - получение корундовой керамики, имеющей низкую температуру обжига при высоких показателях прочности при изгибе. В способе получения корундовой керамики, включающем измельчение и смешивание глинозема с предварительно спеченной стеклодобавкой-минерализатором и фторсодержащей добавкой, прессование и обжиг керамики, согласно изобретению, в качестве стеклодобавки-минерализатора используют трехкомпонентную стеклообразующую систему P2O 5-B2O3-SiO2 при соотношении компонентов (1-2):(0,5-1,0):(2,5-3), предварительно спеченную при температуре 400-450°С. Стеклодобавку смешивают с глиноземом и с фторидами или хлоридами щелочных металлов при следующем соотношении компонентов сырьевой смеси, масс.%: глинозем 81-83, стеклодобавка-минерализатор 15-16, фториды или хлориды щелочных металлов 2-3. Обжиг керамики проводят при температуре 1310-1340°C. 2 табл.

Формула изобретения

Способ получения корундовой керамики, включающий измельчение и смешивание глинозема с предварительно спеченной стеклодобавкой-минерализатором и фторсодержащей добавкой, прессование и обжиг керамики, отличающийся тем, что в качестве стеклодобавки-минерализатора используют трехкомпонентную стеклообразующую систему Р2О52 О3-SiO2 при соотношении компонентов (1-2):(0,5-1,0):(2,5-3), предварительно спеченную при температуре 400-450°C, которую смешивают или с фторидами, или хлоридами щелочных металлов и глиноземом при следующем соотношении компонентов сырьевой смеси, мас.%:

глинозем81-83
стеклодобавка-минерализатор 15-16
фториды или хлориды щелочных металлов2-3,


а обжиг керамики проводят при температуре 1310-1340°C.

Описание изобретения к патенту

Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики с повышенными статическими нагрузками.

Техническим результатом является понижение температуры обжига при одновременном повышении предела прочности при изгибе.

Технический результат достигается тем, что глинозем смешивают с минерализатором, приготовленным из легкоплавких стекол, синтезированных при температуре 400-450°C в трехкомпонентной стеклообразующей системе P2O5-B2 O3-SiO2 при соотношении компонентов (1-2):(0.5-1,0):(2,5-3), а также фторидами или хлоридами щелочных металлов при следующем соотношении компонентов сырьевой смеси, масс.%:

глинозем81-83
стеклодобавка-минерализатор 15-16
фториды или хлориды щелочных металлов2-3,

а обжиг проводят при температуре 1310-1340°C.

Известен способ получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики со стеклодобавкой-минерализатором, содержащим оксиды магния, кальция, кремния и бора при массовом соотношении 0,5:0,5:1:1 (пат. № 2171244, МПК C04B 35/111, заявл. 10.04.2000, опубл. 7.07.2001 г.). Обжиг керамики проводят при 1440-1460°C, а шихта имеет следующее соотношение компонентов, масс.%:

гидрооксид алюминия и/или глинозем способ получения корундовой керамики, патент № 2494994
в пересчете на оксид алюминия 88-92
стеклодобавка 8-12

Недостатком известного способа является повышенная температура обжига керамики (1440-1460°C), а также необходимость предварительного спекания стеклодобавки-минерализатора (8-12 мас.%) при достаточно высоких температурах 900-1000°C.

Наиболее близким техническим решением является способ получения высококачественной конструкционной корундовой керамики со стеклодобавкой-минерализатором, содержащим оксиды кремния, кальция и бора в массовом соотношении 1:1:1 и спеченным при 900-1000°C. При этом шихта дополнительно содержит фторидосодержащую добавку в количестве 0,5-1 масс.%, а обжиг керамики проводят при температуре 1500-1550°C (пат. № 2119901, МПК C04B 35/10, C04B 35/18, заявл. 10.06.1997 г., опубл. 10.10.1998 г.). Недостатком наиболее близкого технического решения способа является высокая температура как предварительного спекания стеклодобавки, так и обжига корундовой керамики.

Задачей предлагаемого способа является разработка способа получения корундовой керамики, имеющей низкую температуру обжига корундовой керамики при высоких показателях прочности при изгибе.

В этом состоит новый технический результат, находящийся в причинно- следственной связи с существенными признаками изобретения.

Существенные признаки изобретения заключаются в том, что в способе получения корундовой керамики, включающей измельчение и смешивание глинозема с предварительно спеченной стеклодобавкой-минерализатором и фторсодержащей добавкой, прессование и обжиг керамики, согласно изобретению, в качестве стеклодобавки-минерализатора используют трехкомпонентную стеклообразующую систему P2O5-B2O3 -SiO2 при соотношении компонентов (1-2):(0.5-1,0):(2,5-3) предварительно спеченной при температуре 400-450°C, которую смешивают или с фторидами или хлоридами щелочных металлов и глиноземом при следующем соотношении компонентов сырьевой смеси, масс.%:

глинозем81-83
стеклодобавка-минерализатор 15-16
фториды или хлориды щелочных металлов2-3

а обжиг керамики проводят при температуре 1310-1340°C.

Использование комбинированного минерализатора, состоящего из стеклодобавки, обладающей низкой температурой размягчения (500-550°C) в сочетании с хлоридами или фторидами щелочных металлов с низкой динамической вязкостью способ получения корундовой керамики, патент № 2494994 =1,0-5,0 Па·с и высокой удельной растекаемостью способ получения корундовой керамики, патент № 2494994 =0,5-2,0 м2/г·103 в интервале температур обжига керамики обеспечивает в процессе обжига образование жидкой фазы высокой реакционной активности за счет низкой вязкости и низкой температуры образования расплава комбинированного минерализатора. В качестве фторидов использовали например, KF или NaF, роль хлоридов выполняли, например, KCl или NaCl.

Способ осуществляется следующим образом. Предварительно готовят добавку-минерализатор синтезом при температуре 400-450°C компонентов P2 O5, B2O3, SiO2, взятых в массовом соотношении (1-2):(0.5-1,0):(2,5-3). Далее компоненты шихты - глинозем (81-83 масс.%), стеклодобавка-минерализатор (15-16 масс.%), фториды или хлориды щелочных металлов (2-3 масс.%), тщательно измельчают до фракции 1-2 мкм. Полученную шихту синтезируют при температуре 1250°C и вновь измельчают, преимущественно в вибромельнице. Из полученной шихты формуют образцы при давлении формования 80-100 МПа, а далее обжигают при температуре 1310-1340°C.

Данные по составу стеклодобавки-минерализатора, соотношению компонентов стеклодобавки, содержанию компонентов шихты, температуре обжига и прочностным характеристикам обожженных изделий по заявляемому способу в сравнении с прототипом представлены в табл.1.

Анализ данных таблицы 1 свидетельствует о перспективности использования стеклодобавки составов 0,2P2O5-0,2B 2O3-0,6SiO2, 0,4P2O 5-0,1B2O3-0,5SiO2 при соотношении компонентов (1-2):(0.5-1,0):(2,5-3), обеспечивающей максимальную прочность при изгибе при минимальной температуре обжига (составы 2,3) из числа исследованных составов 1-5 с различными соотношениями составляющих стеклодобавки, при этом содержание компонентов шихты поддерживалось на фиксированном уровне.

Обоснование оптимального количества стеклодобавки-минерализатора, фторидов или хлоридов щелочных металлов, а также глинозема по заявляемому способу представлено в табл.1 и приведено по отношению к оптимальному составу минерализующей стеклодобавки 0,2P 2O5-0,2B2O3-0,6SiO 2 (состав 2, табл.1) при соотношении в ней компонентов соответственно 1:1:3, обеспечивающих наивысшие показатели прочности корундовой керамики при изгибе.

Анализ данных таблицы 1 свидетельствует о преимуществах содержания стеклодобавки-минерализатора в количестве 15-16 масс.%, фторидов или хлоридов щелочных металлов - 2-3 масс.%, глинозема 81-83 масс.% (составы 7, 9, 11 табл.1).

Данные по оптимальному температурному интервалу подготовки стеклодобавки приведены в таблице 2 (для состава 11, табл.1).

Анализ данных таблицы 2 свидетельствует об оптимальном температурном интервале предварительной подготовки стеклодобавки в 400-450°C.

Таблица 1
Номер составаСостав стеклодобавки-минерализатора (соотношение компонентов) Содержание компонентов в сырьевой смеси, масс.% Температура обжига корундовой керамики, °C Прочность при изгибе, МПа
Глинозем Стеклодобавка-минерализатор Фториды или хлориды металлов
Прототип0,33CaO-0,33B2O 3-0,33SiO2 (1:1:1)способ получения корундовой керамики, патент № 2494994 способ получения корундовой керамики, патент № 2494994 способ получения корундовой керамики, патент № 2494994 1500-1550 200
1 0,1P2O5-0,2B2O3-0,7SiO 2 (0,5:1:3,5)82 1621390 350
2 0,2P2O5-0,2B2O3-0,6SiO 2 (1:1:3)82 1621320 480
3 0,4P2O5-0,1B2O3-0,5SiO 2 (2:0,5:2,5)82 1621310 475
4 0,3P2O5-0,3B2O3-0,4SiO 2 (1:1:2)82 1621290 370
5 0,4P2O5-0,3B2O3-0,3SiO 2 (2:1:1)82 1621270 350
0,2P2O5 -0,2B2O3-0,6SiO2 80173 1310390
6(1:1:3)способ получения корундовой керамики, патент № 2494994 способ получения корундовой керамики, патент № 2494994 способ получения корундовой керамики, патент № 2494994 способ получения корундовой керамики, патент № 2494994 способ получения корундовой керамики, патент № 2494994
7 0,2P2O5-0,2B2O3-0,6SiO 2 (1:1:3)81 1631310 470
8 0,2P2O5-0,2B2O3-0,6SiO 2 (1:1:3)82 1441330 420
0,2P2 O5-0,2B2O3-0,6SiO2 (1:1:3)82 153 1315475
9
0,2P2O5 -0,2B2O3-0,6SiO2 (1:1:3) 8217 11320395
100,2P 2O5-0,2B2O3-0,6SiO 2 (1:1:3)83 1521340 480
11 0,2P2O5-0,2B2O3-0,6SiO 2 (1:1:3)84 1511470 445
12 0,2P2O5-0,2B2O3-0,6SiO 2 (1:1:3)85 141 1480415
13

Таблица 2
Состав стеклодобавки-минерализатораТемпература предварительного спекания стеклодобавки, °C Прочность при изгибе, МПа
0,2P2O5-0,2B2O3-0,6SiO 2 (по примеру 11 табл.1)500 430
450 480
400 475
350 360

Класс C04B35/111 тонкая керамика

способ легирования алюмооксидной керамики -  патент 2525889 (20.08.2014)
способ получения конструкционной алюмооксидной керамики -  патент 2522487 (20.07.2014)
шихта для изготовления алюмооксидной керамики -  патент 2501768 (20.12.2013)
шихта керамического материала для высокотемпературного применения в окислительных средах -  патент 2498963 (20.11.2013)
способ получения пористого керамического материала -  патент 2476406 (27.02.2013)
способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ -  патент 2474558 (10.02.2013)
волокна из поликристаллического корунда и способ их получения -  патент 2465247 (27.10.2012)
способ получения корундовой керамики -  патент 2465246 (27.10.2012)
способ получения конструкционной алюмооксидной керамики -  патент 2453517 (20.06.2012)
способ получения корундовой керамики -  патент 2405756 (10.12.2010)
Наверх